The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea.

[1]  C. von Mering,et al.  IFN-γ Hinders Recovery from Mucosal Inflammation during Antibiotic Therapy for Salmonella Gut Infection. , 2016, Cell host & microbe.

[2]  Tine Hald,et al.  World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis , 2015, PLoS medicine.

[3]  N. Speybroeck,et al.  World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010 , 2015, PLoS medicine.

[4]  Martina Sassone-Corsi,et al.  No Vacancy: How Beneficial Microbes Cooperate with Immunity To Provide Colonization Resistance to Pathogens , 2015, The Journal of Immunology.

[5]  David S. Wishart,et al.  MetaboAnalyst 3.0—making metabolomics more meaningful , 2015, Nucleic Acids Res..

[6]  T. Cullen,et al.  Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation , 2015, Science.

[7]  W. Hardt,et al.  Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. , 2014, Cell host & microbe.

[8]  J. Dekker,et al.  REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum , 2013, Mucosal Immunology.

[9]  M. Robinson,et al.  Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. , 2013, Cell host & microbe.

[10]  W. Hardt,et al.  Outer Membrane Permeabilization Is an Essential Step in the Killing of Gram-Negative Bacteria by the Lectin RegIIIβ , 2013, PloS one.

[11]  Sang-Uk Seo,et al.  Role of the gut microbiota in immunity and inflammatory disease , 2013, Nature Reviews Immunology.

[12]  K. Itoh,et al.  IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. , 2013, Immunobiology.

[13]  W. Hardt,et al.  The Bactericidal Activity of the C-type Lectin RegIIIβ against Gram-negative Bacteria involves Binding to Lipid A* , 2012, The Journal of Biological Chemistry.

[14]  B. Stecher,et al.  The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response , 2012, Immunological reviews.

[15]  R. Ley,et al.  The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2011, Science.

[16]  J. Roth,et al.  Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota , 2011, Proceedings of the National Academy of Sciences.

[17]  D. Bumann,et al.  Salmonella-Induced Mucosal Lectin RegIIIβ Kills Competing Gut Microbiota , 2011, PloS one.

[18]  T. Chatila,et al.  The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011, Science.

[19]  Wolf-Dietrich Hardt,et al.  Mechanisms controlling pathogen colonization of the gut. , 2011, Current opinion in microbiology.

[20]  J. Sirard,et al.  The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea , 2010, PLoS pathogens.

[21]  J. Roth,et al.  Gut inflammation provides a respiratory electron acceptor for Salmonella , 2010, Nature.

[22]  H. Hellmann,et al.  Vitamin B6: A Molecule for Human Health? , 2010, Molecules.

[23]  Michael D. George,et al.  Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. , 2009, Cell host & microbe.

[24]  S. Meydani,et al.  Vitamin B6 and immune competence. , 2009, Nutrition reviews.

[25]  S. Akira,et al.  Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis , 2009, Gut.

[26]  L. Eckmann,et al.  Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface , 2008, Proceedings of the National Academy of Sciences.

[27]  Ronald P. DeMatteo,et al.  Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits , 2008, Nature.

[28]  B. Finlay,et al.  Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection , 2008, Infection and Immunity.

[29]  N. Pace,et al.  Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. , 2008, Cell host & microbe.

[30]  Judy H. Cho,et al.  The genetics and immunopathogenesis of inflammatory bowel disease , 2008, Nature Reviews Immunology.

[31]  W. Rabsch,et al.  Motility allows S. Typhimurium to benefit from the mucosal defence , 2008, Cellular microbiology.

[32]  Wolf-Dietrich Hardt,et al.  The role of microbiota in infectious disease. , 2008, Trends in microbiology.

[33]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[34]  N. Salzman,et al.  Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract , 2007, Infection and Immunity.

[35]  K. Itoh,et al.  Prior stimulation of antigen-presenting cells with Lactobacillus regulates excessive antigen-specific cytokine responses in vitro when compared with Bacteroides , 2007, Cytotechnology.

[36]  G. Dougan,et al.  Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota , 2007, PLoS biology.

[37]  B. Finlay,et al.  Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. , 2007, Cell host & microbe.

[38]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[39]  U. Gophna,et al.  Differences between Tissue-Associated Intestinal Microfloras of Patients with Crohn's Disease and Ulcerative Colitis , 2006, Journal of Clinical Microbiology.

[40]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[41]  K. Mølbak Human health consequences of antimicrobial drug-resistant Salmonella and other foodborne pathogens. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[42]  J. Hampe,et al.  Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease , 2004, Gut.

[43]  H. Lehr,et al.  Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. , 2003, Gastroenterology.

[44]  M. Hogardt,et al.  Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host , 2003, Infection and Immunity.

[45]  G. Macfarlane,et al.  Nondigestible Oligosaccharides Enhance Bacterial Colonization Resistance against Clostridium difficile In Vitro , 2003, Applied and Environmental Microbiology.

[46]  J. Doré,et al.  Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon , 2003, Gut.

[47]  G. Macfarlane,et al.  Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. , 2002, Journal of medical microbiology.

[48]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Harbige Nutrition and Immunity with Emphasis on Infection and Autoimmune Disease* , 1996, Nutrition and health.

[50]  R. Russell,et al.  Vitamin B-6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. , 1991, The American journal of clinical nutrition.

[51]  D. van der Waaij,et al.  Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. , 1971 .

[52]  M. Bohnhoff,et al.  RESISTANCE OF THE MOUSE'S INTESTINAL TRACT TO EXPERIMENTAL SALMONELLA INFECTION , 1964, The Journal of experimental medicine.

[53]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[54]  K. Itoh,et al.  Bacteroides acidifaciens sp. nov., isolated from the caecum of mice. , 2000, International journal of systematic and evolutionary microbiology.