Fuzzy neural networks for water level and discharge forecasting with uncertainty

[1]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[2]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[3]  Stan Openshaw,et al.  A hybrid multi-model approach to river level forecasting , 2000 .

[4]  L. Ridolfi,et al.  Fuzzy Approach for Analysis of Pipe Networks , 2002 .

[5]  Durga L. Shrestha,et al.  Machine learning approaches for estimation of prediction interval for the model output , 2006, Neural Networks.

[6]  Martin F. Lambert,et al.  Bayesian training of artificial neural networks used for water resources modeling , 2005 .

[7]  R Govindaraju,et al.  ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY: II, HYDROLOGIC APPLICATIONS , 2000 .

[8]  A. Soldati,et al.  River flood forecasting with a neural network model , 1999 .

[9]  Robert J. Abrahart,et al.  Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments , 2002 .

[10]  Roman Krzysztofowicz,et al.  The case for probabilistic forecasting in hydrology , 2001 .

[11]  L. Štravs,et al.  Development of a low-flow forecasting model using the M5 machine learning method , 2007 .

[12]  Hideo Tanaka,et al.  Fuzzy regression analysis by fuzzy neural networks and its application , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[13]  François Anctil,et al.  Tools for the assessment of hydrological ensemble forecasts obtained by neural networks , 2009 .

[14]  Didier Dubois Fuzzy sets and systems , 1980 .

[15]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[16]  Alberto Montanari,et al.  What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology , 2007 .

[17]  K. P. Sudheer,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[18]  Asaad Y. Shamseldin,et al.  Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall‐runoff modeling , 2007 .

[19]  Stefano Alvisi,et al.  Water level forecasting through fuzzy logic and artificial neural network approaches , 2005 .

[20]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  A. Bárdossy,et al.  Fuzzy regression in hydrology , 1990 .

[22]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[23]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[24]  Robert J. Abrahart,et al.  Neural network modelling of non-linear hydrological relationships , 2007 .

[25]  J. Nie,et al.  Constructing rule-bases for multivariable fuzzy control by self-learning Part 1. System structure and learning algorithms , 1993 .

[26]  Hisao Ishibuchi,et al.  Fuzzy neural networks with fuzzy weights and fuzzy biases , 1993, IEEE International Conference on Neural Networks.

[27]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[28]  Yen-Chang Chen,et al.  A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction , 2001 .

[29]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[30]  Martin T. Hagan,et al.  Neural network design , 1995 .

[31]  Alberto Montanari,et al.  Estimating the uncertainty of hydrological forecasts: A statistical approach , 2008 .

[32]  Hisao Ishibuchi,et al.  Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks , 2001, Fuzzy Sets Syst..

[33]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[34]  Hideo Tanaka,et al.  A fuzzy neural network with trapezoid fuzzy weights , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[35]  Paulin Coulibaly,et al.  Bayesian neural network for rainfall‐runoff modeling , 2006 .

[36]  Armando Brath,et al.  Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling , 2007 .

[37]  Roman Krzysztofowicz,et al.  Bayesian theory of probabilistic forecasting via deterministic hydrologic model , 1999 .

[38]  A. Soldati,et al.  Flood Forecasting in the River Arno , 2003 .

[39]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Faming Liang,et al.  Estimating uncertainty of streamflow simulation using Bayesian neural networks , 2009 .

[41]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[42]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[43]  Li-Chiu Chang,et al.  Fuzzy exemplar‐based inference system for flood forecasting , 2005 .

[44]  Lucien Duckstein,et al.  Fuzzy conceptual rainfall–runoff models , 2001 .

[45]  J. Vanhatalo,et al.  MCMC Methods for MLP-network and Gaussian Process and Stuff – A documentation for Matlab Toolbox , 2006 .

[46]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[47]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[48]  M. Franchini,et al.  Fuzzy unit hydrograph , 2006 .

[49]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[50]  S. Sorooshian,et al.  A maximum likelihood criterion for use with data collected at unequal time intervals , 1988 .

[51]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.

[52]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[53]  M. Franchini,et al.  Comparative analysis of several conceptual rainfall-runoff models , 1991 .

[54]  A. Bárdossy,et al.  Development of a fuzzy logic-based rainfall-runoff model , 2001 .

[55]  Jouko Lampinen,et al.  Bayesian approach for neural networks--review and case studies , 2001, Neural Networks.

[56]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[57]  Lihua Xiong,et al.  Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation / Indices pour évaluer les bornes de prévision de modèles hydrologiques et mise en œuvre pour une estimation d'incertitude par vraisemblance généralisée , 2009 .

[58]  K. Thirumalaiah,et al.  Hydrological Forecasting Using Neural Networks , 2000 .

[59]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[60]  D. Solomatine,et al.  Model trees as an alternative to neural networks in rainfall—runoff modelling , 2003 .

[61]  S. Grossberg How does a brain build a cognitive code , 1980 .

[62]  Radford M. Neal Bayesian training of backpropagation networks by the hybrid Monte-Carlo method , 1992 .

[63]  Robert J. Abrahart,et al.  Hydroinformatics: computational intelligence and technological developments in water science applications—Editorial , 2007 .