Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing

We study Parallel Task Scheduling P m | s i z e j | C max with a constant number of machines. This problem is known to be strongly NP-complete for each m ≥ 5, while it is solvable in pseudo-polynomial time for each m ≤ 3. We give a positive answer to the long-standing open question whether this problem is strongly NP-complete for m = 4. As a second result, we improve the lower bound of 12 11 $\frac {12}{11}$ for approximating pseudo-polynomial Strip Packing to 5 4 $\frac {5}{4}$ . Since the best known approximation algorithm for this problem has a ratio of 5 4 + ε $\frac {5}{4} + \varepsilon $ , this result almost closes the gap between approximation ratio and inapproximability result. Both results are proved by a reduction from the strongly NP-complete problem 3-Partition.

[1]  Rob van Stee,et al.  Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems , 2009, APPROX-RANDOM.

[2]  Klaus Jansen,et al.  Scheduling Monotone Moldable Jobs in Linear Time , 2017, 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[3]  A. Steinberg,et al.  A Strip-Packing Algorithm with Absolute Performance Bound 2 , 1997, SIAM J. Comput..

[4]  Brenda S. Baker,et al.  A 5/4 Algorithm for Two-Dimensional Packing , 1981, J. Algorithms.

[5]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[6]  José R. Correa,et al.  Bin Packing in Multiple Dimensions: Inapproximability Results and Approximation Schemes , 2006, Math. Oper. Res..

[7]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..

[8]  Klaus Jansen,et al.  Rectangle packing with one-dimensional resource augmentation , 2009, Discret. Optim..

[9]  Claire Mathieu,et al.  A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem , 2000, Math. Oper. Res..

[10]  Klaus Jansen,et al.  Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks , 1999, SODA '99.

[11]  Prasoon Tiwari,et al.  Scheduling malleable and nonmalleable parallel tasks , 1994, SODA '94.

[12]  Fabrizio Grandoni,et al.  Improved Pseudo-Polynomial-Time Approximation for Strip Packing , 2018, FSTTCS.

[13]  Michal Pilipczuk,et al.  Hardness of Approximation for Strip Packing , 2017, TOCT.

[14]  Klaus Jansen,et al.  A (5 / 3 + ε ) -Approximation for Strip Packing ∗ , 2011 .

[15]  Robert E. Tarjan,et al.  Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms , 1980, SIAM J. Comput..

[16]  Philip S. Yu,et al.  Approximate algorithms scheduling parallelizable tasks , 1992, SPAA '92.

[17]  Klaus Jansen,et al.  Closing the gap for pseudo-polynomial strip packing , 2017, ESA.

[18]  Giorgi Nadiradze,et al.  On approximating strip packing with a better ratio than 3/2 , 2016, SODA.

[19]  Klaus Jansen,et al.  Approximation Algorithms for Scheduling Parallel Jobs , 2010, SIAM J. Comput..

[20]  Klaus Jansen,et al.  Improved approximation for two dimensional Strip Packing with polynomial bounded width , 2019, Theor. Comput. Sci..

[21]  Klaus Jansen,et al.  A(3/2+ε) approximation algorithm for scheduling moldable and non-moldable parallel tasks , 2012, SPAA '12.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Anja Feldmann,et al.  Dynamic scheduling on parallel machines , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[24]  Ingo Schiermeyer,et al.  Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles , 1994, ESA.

[25]  Igal Golan,et al.  Performance Bounds for Orthogonal Oriented Two-Dimensional Packing Algorithms , 1981, SIAM J. Comput..

[26]  Maxim Sviridenko A note on the Kenyon-Remila strip-packing algorithm , 2012, Inf. Process. Lett..

[27]  Evripidis Bampis,et al.  Scheduling Independent Multiprocessor Tasks , 1997, ESA.

[28]  Daniel Dominic Sleator,et al.  A 2.5 Times Optimal Algorithm for Packing in Two Dimensions , 1980, Inf. Process. Lett..

[29]  Henrik I. Christensen,et al.  Approximation and online algorithms for multidimensional bin packing: A survey , 2017, Comput. Sci. Rev..

[30]  Klaus Jansen,et al.  Approximation Algorithms for Multiple Strip Packing and Scheduling Parallel Jobs in Platforms , 2011, Discret. Math. Algorithms Appl..

[31]  Ronald L. Graham,et al.  Bounds for Multiprocessor Scheduling with Resource Constraints , 1975, SIAM J. Comput..