Pseudospectra of linear matrix pencils by block diagonalization

We propose an algorithm that block-diagonalizes regular matrix pencils using well conditioned transformations. This algorithm is used for approximating the pseudospectra of matrix pencils. Several numerical experiments illustrate the behavior of the proposed algorithm.

[1]  N. Higham,et al.  Computing the field of values and pseudospectra using the Lanczos method with continuation , 1996 .

[2]  Vincent Heuveline,et al.  Parallel Computation of Spectral Portrait of Large Matrices , 1996, PARA.

[3]  Bo Kågström,et al.  LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs , 1994, TOMS.

[4]  G. Stewart,et al.  An Algorithm for the Generalized Matrix Eigenvalue Problem Ax = Lambda Bx , 1971 .

[5]  Miloud Sadkane,et al.  Une méthode stable de bloc-diagonalisation de matrices: Application au calcul de portrait spectral , 1997 .

[6]  J. Demmel Computing stable eigendecompositions of matrices , 1986 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[9]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[10]  Vincent Toumazou,et al.  Portraits spectraux de matrices : un outil d'analyse de la stabilité , 1996 .

[11]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[12]  Jocelyne Erhel,et al.  Spectral portrait for non-hermitian large sparse matrices , 1994, Computing.

[13]  S. H. Lui,et al.  Computation of Pseudospectra by Continuation , 1997, SIAM J. Sci. Comput..

[15]  Miloud Sadkane,et al.  Spectral Portrait of Matrices by Block Diagonalization , 1996, WNAA.

[16]  Bo Kågström,et al.  Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.

[17]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[18]  Gene H. Golub,et al.  Ill-conditioned eigensystems and the computation of the Jordan canonical form , 1975, Milestones in Matrix Computation.

[19]  G. Stewart,et al.  An Algorithm for Computing Reducing Subspaces by Block Diagonalization. , 1979 .

[20]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[21]  J. L. V. Dorsselaer,et al.  Pseudospectra for matrix pencils and stability of equilibria , 1997 .