Optimal combinations bounds of root-square and arithmetic means for Toader mean

We find the greatest value α1 and α2, and the least values β1 and β2, such that the double inequalities α1S(a,b) + (1 − α1) A(a,b) < T(a,b) < β1S(a,b) + (1 − β1) A(a,b) and $S^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)< T(a,b)< S^{\beta_{2}}(a,b)A^{1-\beta_{2}}(a,b)$ hold for all a,b > 0 with a ≠ b. As applications, we get two new bounds for the complete elliptic integral of the second kind in terms of elementary functions. Here, S(a,b) = [(a2 + b2)/2]1/2, A(a,b) = (a + b)/2, and $T(a,b)=\frac{2}{\pi}\int\limits_{0}^{{\pi}/{2}}\sqrt{a^2{\cos^2{\theta}}+b^2{\sin^2{\theta}}}{\rm d}\theta$ denote the root-square, arithmetic, and Toader means of two positive numbers a and b, respectively.

[1]  R. Barnard,et al.  A SURVEY OF SOME BOUNDS FOR GAUSS' HYPERGEOMETRIC FUNCTION AND RELATED BIVARIATE MEANS , 2010 .

[2]  Gh. Toader,et al.  Some Mean Values Related to the Arithmetic–Geometric Mean , 1998 .

[3]  R. Barnard,et al.  Inequalities for the Perimeter of an Ellipse , 2001 .

[4]  Feng Qi,et al.  Some bounds for the complete elliptic integrals of the first and second kinds , 2009, 0905.2787.

[5]  Sharp power mean bounds for the Gaussian hypergeometric function , 2005 .

[6]  Horst Alzer,et al.  Monotonicity theorems and inequalities for the complete elliptic integrals , 2004 .

[7]  Roger W. Barnard,et al.  A Monotonicity Property Involving 3F2 and Comparisons of the Classical Approximations of Elliptical Arc Length , 2000, SIAM J. Math. Anal..

[8]  Jonathan M. Borwein,et al.  Inequalities for compound mean iterations with logarithmic asymptotes , 1993 .

[9]  Roger W. Barnard,et al.  An Inequality Involving the Generalized Hypergeometric Function and the Arc Length of an Ellipse , 2000, SIAM J. Math. Anal..

[10]  G. Anderson,et al.  Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .

[11]  Horst Alzer,et al.  A Power Mean Inequality for the Gamma Function , 2000 .

[12]  Yu-Ming Chu,et al.  Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions☆ , 2009 .

[13]  P. Hästö Optimal inequalities between Seiffert's mean and power means , 2004 .

[14]  Horst Alzer,et al.  Inequalities for Means in Two Variables , 2003 .

[15]  M. Vamanamurthy,et al.  Inequalities for Means , 1994 .

[16]  Zhen-Hang Yang A New Proof of Inequalities for Gauss Compound Mean , 2008 .

[17]  Tung-Po Lin,et al.  The Power Mean and the Logarithmic Mean , 1974 .

[18]  E. V. Huntington,et al.  Sets of independent postulates for the arithmetic mean, the geometric mean, the harmonic mean, and the root-mean-square , 2022 .

[19]  D. S. Mitrinovic,et al.  Means and Their Inequalities , 1989, Int. J. Math. Math. Sci..