Addressing the complexity of combustion kinetics: Data management and automatic model validation

Abstract The steadily increasing amount of experimental data produced in combustion science allows kinetic modelers to develop more and more accurate detailed mechanisms of hydrocarbon and oxygenated fuels pyrolysis and oxidation, as well as pollutants formation. Nevertheless, it poses a twofold issue: firstly, the management of a growing pool of datasets and related sources needs to be properly structured, in order to ensure reliability and ease its use, also according to recent governmental policies; secondly, it makes the validation step a potential bottleneck in terms of time and reliability, because of its typically manual, and subjective, nature. In this chapter, both of these topics are addressed: needs and recent initiatives undertaken by private and public entities are discussed, and novel frameworks to tackle both issues are presented and briefly validated.

[1]  Edward S. Blurock,et al.  Detailed Mechanism Generation. 1. Generalized Reactive Properties as Reaction Class Substructures , 2004, J. Chem. Inf. Model..

[2]  Genny A. Pang,et al.  The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves , 2009 .

[3]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[4]  Marcos Chaos,et al.  Interpreting chemical kinetics from complex reaction–advection–diffusion systems: Modeling of flow reactors and related experiments , 2014 .

[5]  H. Curran,et al.  Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers. , 2015, The journal of physical chemistry. A.

[6]  Chih-Jen Sung,et al.  Using rapid compression machines for chemical kinetics studies , 2014 .

[7]  Hai Wang,et al.  Combustion kinetic model uncertainty quantification, propagation and minimization , 2015 .

[8]  Ronald K. Hanson,et al.  Study of the High-Temperature Autoignition of n-Alkane/O/Ar Mixtures , 2002 .

[9]  M. Oehlschlaeger,et al.  A shock tube study of the auto-ignition of toluene/air mixtures at high pressures , 2009 .

[10]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[11]  William H. Green,et al.  Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms , 2016, Comput. Phys. Commun..

[12]  C. Willmott ON THE VALIDATION OF MODELS , 1981 .

[13]  Michèle Basseville,et al.  The asymptotic local approach to change detection and model validation , 1987 .

[14]  Tiziano Faravelli,et al.  OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms , 2015, Comput. Phys. Commun..

[15]  C. Westbrook,et al.  Chemical kinetic modeling of hydrocarbon combustion , 1984 .

[16]  Kun Wang,et al.  Violation of collision limit in recently published reaction models , 2017 .

[17]  Anita de Waard,et al.  Research data management at Elsevier: Supporting networks of data and workflows , 2016, Inf. Serv. Use.

[18]  Ronald K. Hanson,et al.  Interpreting shock tube ignition data , 2004 .

[19]  M. Frenklach,et al.  Detailed modeling of soot particle nucleation and growth , 1991 .

[20]  Tiziano Faravelli,et al.  Curve matching, a generalized framework for models/experiments comparison: An application to n-heptane combustion kinetic mechanisms , 2016 .

[21]  Tiziano Faravelli,et al.  Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures , 1995 .

[22]  Margaret S. Wooldridge,et al.  Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena , 2017 .

[23]  Wolfgang Marquardt,et al.  Optimal Experimental Design for Discriminating Numerous Model Candidates: The AWDC Criterion , 2010 .

[24]  P. Roth,et al.  Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures , 2005 .

[25]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[26]  Herbert Olivier,et al.  Role of peroxy chemistry in the high-pressure ignition of n-butanol - Experiments and detailed kinetic modelling , 2011 .

[27]  Tamás Turányi,et al.  Local and global uncertainty analysis of complex chemical kinetic systems , 2006, Reliab. Eng. Syst. Saf..

[28]  Tiziano Faravelli,et al.  Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures , 2001 .

[29]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[30]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[31]  Xiaolong Gou,et al.  A path flux analysis method for the reduction of detailed chemical kinetic mechanisms , 2010 .

[32]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[33]  D. P. Mishra Experimental combustion : an introduction , 2014 .

[34]  F. P. Di Maio,et al.  KING, a KInetic Network Generator , 1992 .

[35]  Heinz Pitsch,et al.  Experimental Design for Discrimination of Chemical Kinetic Models for Oxy-Methane Combustion , 2017 .

[36]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[37]  W. Green,et al.  Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics , 2019, Proceedings of the Combustion Institute.

[38]  E. Ranzi,et al.  Skeletal mechanism reduction through species-targeted sensitivity analysis , 2016 .

[39]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[40]  Gautam Kalghatgi,et al.  The outlook for fuels for internal combustion engines , 2014 .

[41]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[42]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[43]  A. G. Gaydon,et al.  The shock tube in high-temperature chemical physics , 1963 .

[44]  H. Pitsch,et al.  Mechanism optimization based on reaction rate rules , 2014 .

[45]  Richard A. Yetter,et al.  Autoignition of H2/CO at elevated pressures in a rapid compression machine , 2006 .

[46]  H. Curran,et al.  A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels , 2013 .

[47]  Alison S. Tomlin,et al.  The use of global uncertainty methods for the evaluation of combustion mechanisms , 2006, Reliab. Eng. Syst. Saf..

[48]  N. Peters,et al.  Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation , 2009 .

[49]  Eliseo Ranzi,et al.  Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) , 1979 .

[50]  S. Klippenstein From theoretical reaction dynamics to chemical modeling of combustion , 2017 .

[51]  S. Klippenstein,et al.  EStokTP: Electronic Structure to Temperature- and Pressure-Dependent Rate Constants-A Code for Automatically Predicting the Thermal Kinetics of Reactions. , 2019, Journal of chemical theory and computation.

[52]  J. S. Urban Hjorth,et al.  Computer Intensive Statistical Methods: Validation, Model Selection, and Bootstrap , 1993 .

[53]  William H. Green,et al.  Automated Reaction Discovery from Combined Application of Transition State Search Algorithms , 2018 .

[54]  D. Goodwin,et al.  Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.0 , 2015 .

[55]  G. Dixon-Lewis,et al.  Flame structure and flame reaction kinetics I. Solution of conservation equations and application to rich hydrogen-oxygen flames , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[56]  H. Pitsch,et al.  An efficient error-propagation-based reduction method for large chemical kinetic mechanisms , 2008 .

[57]  Ultan Burke,et al.  A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation , 2016 .

[58]  Kyle E. Niemeyer,et al.  Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis , 2009, 1607.05079.

[59]  William H. Green,et al.  Predictive Kinetics: A New Approach for the 21st Century , 2010 .

[60]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[61]  H. Ciezki,et al.  Shock-tube investigation of self-ignition of n-heptane - Air mixtures under engine relevant conditions , 1993 .

[62]  C. Law,et al.  Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels , 2012 .

[63]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[64]  Anthony J. Marchese,et al.  A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis , 1997 .

[65]  Ronald K. Hanson,et al.  Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures , 2005 .

[66]  Pierre-Alexandre Glaude,et al.  Computer Based Generation of Reaction Mechanisms for Gas-phase Oxidation , 2000, Comput. Chem..

[67]  S. Klippenstein,et al.  H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation. , 2018, Physical chemistry chemical physics : PCCP.

[68]  Ronald K. Hanson,et al.  Nonideal effects behind reflected shock waves in a high-pressure shock tube , 2001 .

[69]  Robert E. Davis,et al.  The continuing search for an anthropogenic climate change signal: Limitations of correlation‐based approaches , 1997 .

[70]  J. Warnatz,et al.  Automatic generation of reaction mechanisms for the description of the oxidation of higher hydrocarbons , 1990 .

[71]  Robert G. Sargent,et al.  Verification and validation of simulation models , 2009, IEEE Engineering Management Review.

[72]  Tiziano Faravelli,et al.  Storing Combustion Data Experiments: New Requirements Emerging from a First Prototype - Position Paper , 2018, SAVE-SD@WWW.

[73]  Roda Bounaceur,et al.  Laminar burning velocity of gasolines with addition of ethanol , 2014 .

[74]  Tiziano Faravelli,et al.  New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes , 2015 .

[75]  Alison S. Tomlin,et al.  The role of sensitivity and uncertainty analysis in combustion modelling , 2013 .

[76]  Andrew Smallbone,et al.  Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity , 2011 .

[77]  Marcos Chaos,et al.  Chemical-kinetic modeling of ignition delay: Considerations in interpreting shock tube data , 2010 .

[78]  J. Sutherland,et al.  The thermodynamic state of the hot gas behind reflected shock waves: Implication to chemical kinetics† , 1986 .

[79]  Kyle E. Niemeyer,et al.  Assessing impacts of discrepancies in model parameters on autoignition model performance: A case study using butanol , 2017, 1708.02232.

[80]  Tamás Varga,et al.  Comparison of the performance of several recent hydrogen combustion mechanisms , 2014 .

[81]  Kyle E. Niemeyer,et al.  ChemKED: a human- and machine-readable data standard for chemical kinetics experiments , 2017, ArXiv.

[82]  Genny A. Pang,et al.  Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves , 2013 .