In vivo magnetic resonance imaging of transgene expression

[1]  D. Housman,et al.  Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. , 1999, Molecular pharmacology.

[2]  R. Weissleder,et al.  In vivo imaging of tumors with protease-activated near-infrared fluorescent probes , 1999, Nature Biotechnology.

[3]  S. Cherry,et al.  Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[5]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[6]  R. Xavier,et al.  Tumor Induction of VEGF Promoter Activity in Stromal Cells , 1998, Cell.

[7]  R Weissleder,et al.  Measuring transferrin receptor gene expression by NMR imaging. , 1998, Biochimica et biophysica acta.

[8]  R. Jain,et al.  Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. , 1998, BioTechniques.

[9]  David K. Stevenson,et al.  Bioluminescent indicators in living mammals , 1998, Nature Medicine.

[10]  R Weissleder,et al.  Magnetically labeled cells can be detected by MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[11]  R G Blasberg,et al.  Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. , 1996, Cancer research.

[12]  R. Weissleder,et al.  Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain. , 1995, The American journal of pathology.

[13]  R. Klausner,et al.  Overexpression of iron-responsive element-binding protein and its analytical characterization as the RNA-binding form, devoid of an iron-sulfur cluster. , 1994, Archives of biochemistry and biophysics.

[14]  G. Johnson,et al.  Magnetic resonance microscopy of mouse embryos. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R E Jacobs,et al.  Magnetic resonance microscopy of embryonic cell lineages and movements. , 1994, Science.

[16]  R Weissleder,et al.  Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties , 1993, Magnetic resonance in medicine.

[17]  L W Hedlund,et al.  Histology by magnetic resonance microscopy. , 1993, Magnetic resonance quarterly.

[18]  R. Klausner,et al.  Iron regulation of transferrin receptor mRNA levels requires iron‐responsive elements and a rapid turnover determinant in the 3′ untranslated region of the mRNA. , 1989, The EMBO journal.

[19]  R D Klausner,et al.  Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. , 1988, Science.