Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

[1]  Bjoern Peters,et al.  The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype , 2010, Immunogenetics.

[2]  T. Harkins,et al.  Major histocompatibility complex genotyping with massively parallel pyrosequencing , 2009, Nature Medicine.

[3]  N. Haigwood Update on animal models for HIV research , 2009, European journal of immunology.

[4]  John Sidney,et al.  Two MHC Class I Molecules Associated with Elite Control of Immunodeficiency Virus Replication, Mamu-B*08 and HLA-B*2705, Bind Peptides with Sequence Similarity12 , 2009, The Journal of Immunology.

[5]  J. Ma,et al.  Identification of 17 novel major histocompatibility complex-A alleles in a population of Chinese-origin rhesus macaques. , 2009, Tissue antigens.

[6]  Jeremiah D. Degenhardt,et al.  Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta) , 2009, PLoS genetics.

[7]  Jeremiah D. Degenhardt,et al.  Copy Number Variation of CCL 3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques ( Macaca mulatta ) , 2009 .

[8]  D. Ouyang,et al.  Identification of major histocompatibility complex class I alleles in Chinese rhesus macaques. , 2008, Acta biochimica et biophysica Sinica.

[9]  R. Bontrop,et al.  A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin , 2008, Immunogenetics.

[10]  John P. Moore,et al.  Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans , 2008, Nature Medicine.

[11]  Todd M. Allen,et al.  Structural and Functional Constraints Limit Options for Cytotoxic T-Lymphocyte Escape in the Immunodominant HLA-B27-Restricted Epitope in Human Immunodeficiency Virus Type 1 Capsid , 2008, Journal of Virology.

[12]  S. Kanthaswamy,et al.  Genetic characterization of wild and captive rhesus macaques in China* , 2008, Journal of medical primatology.

[13]  Wilfried Bardet,et al.  Identification of breast cancer peptide epitopes presented by HLA-A*0201. , 2008, Journal of proteome research.

[14]  L. Fritts,et al.  Interferon-Induced Expression of MxA in the Respiratory Tract of Rhesus Macaques Is Suppressed by Influenza Virus Replication1 , 2008, The Journal of Immunology.

[15]  Bjoern Peters,et al.  Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries , 2008, Immunome research.

[16]  P. Luciw,et al.  Macaque Models of Human Infectious Disease , 2008, ILAR journal.

[17]  M. Kuroda,et al.  Early restoration of mucosal CD4 memory CCR5 T cells in the gut of SIV-infected rhesus predicts long term non-progression , 2007, AIDS.

[18]  P. Formenty,et al.  Marburg Virus Angola Infection of Rhesus Macaques: Pathogenesis and Treatment with Recombinant Nematode Anticoagulant Protein c2 , 2007, The Journal of infectious diseases.

[19]  P. Jahrling,et al.  Pathologic findings associated with delayed death in nonhuman primates experimentally infected with Zaire Ebola virus. , 2007, The Journal of infectious diseases.

[20]  G. Silvestri,et al.  CD4+ CCR5+ T-Cell Dynamics during Simian Immunodeficiency Virus Infection of Chinese Rhesus Macaques , 2007, Journal of Virology.

[21]  D. Watkins,et al.  Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes , 2007, Immunogenetics.

[22]  M. Carrington,et al.  Mamu-B*08-Positive Macaques Control Simian Immunodeficiency Virus Replication , 2007, Journal of Virology.

[23]  R. Bontrop,et al.  MHC class I A region diversity and polymorphism in macaque species , 2007, Immunogenetics.

[24]  A. Hughes,et al.  Identification of MHC class I sequences in Chinese-origin rhesus macaques , 2007, Immunogenetics.

[25]  H. Fox,et al.  Battle of Animal Models , 2007, Journal of Neuroimmune Pharmacology.

[26]  Bjoern Peters,et al.  Detailed characterization of the peptide binding specificity of five common Patr class I MHC molecules , 2006, Immunogenetics.

[27]  M. Carrington,et al.  The High-Frequency Major Histocompatibility Complex Class I Allele Mamu-B*17 Is Associated with Control of Simian Immunodeficiency Virus SIVmac239 Replication , 2006, Journal of Virology.

[28]  A. McMichael,et al.  The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. 1986. , 2006, Journal of immunology.

[29]  Ronald E. Bontrop,et al.  Immunogenetics , 2005, Genes and Immunity.

[30]  Bjoern Peters,et al.  The High Frequency Indian Rhesus Macaque MHC Class I Molecule, Mamu-B*01, Does Not Appear to Be Involved in CD8+ T Lymphocyte Responses to SIVmac2391 , 2005, The Journal of Immunology.

[31]  T. Burdo,et al.  Susceptibility of Chinese rhesus monkeys to SIV infection , 2005, AIDS.

[32]  John Sidney,et al.  Classification of A1- and A24-supertype molecules by analysis of their MHC-peptide binding repertoires , 2005, Immunogenetics.

[33]  D. Watkins,et al.  Rhesus Macaque MHC Class I Molecules Present HLA-B-Like Peptides1 , 2005, The Journal of Immunology.

[34]  D. Watkins,et al.  Unparalleled complexity of the MHC class I region in rhesus macaques. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Carrion,et al.  Demand for Nonhuman Primate Resources in the Age of Biodefense , 2005, ILAR journal.

[36]  J. Sidney,et al.  Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity , 2005, Immunogenetics.

[37]  J. Sidney,et al.  Identification of Seventeen New Simian Immunodeficiency Virus-Derived CD8+ T Cell Epitopes Restricted by the High Frequency Molecule, Mamu-A*02, and Potential Escape from CTL Recognition1 , 2004, The Journal of Immunology.

[38]  D. G. Smith,et al.  Effects of geographic origin on captive Macaca mulatta mitochondrial DNA variation. , 2004, Comparative medicine.

[39]  Todd M. Allen,et al.  Major Histocompatibility Complex Class I Alleles Associated with Slow Simian Immunodeficiency Virus Disease Progression Bind Epitopes Recognized by Dominant Acute-Phase Cytotoxic-T-Lymphocyte Responses , 2003, Journal of Virology.

[40]  Todd M. Allen,et al.  Expression of the Major Histocompatibility Complex Class I Molecule Mamu-A*01 Is Associated with Control of Simian Immunodeficiency Virus SIVmac239 Replication , 2003, Journal of Virology.

[41]  John Sidney,et al.  Class I molecules with similar peptide-binding specificities are the result of both common ancestry and convergent evolution , 2003, Immunogenetics.

[42]  Demands for rhesus monkeys in biomedical research: a workshop report. , 2003, ILAR journal.

[43]  Julie D Thompson,et al.  Multiple Sequence Alignment Using ClustalW and ClustalX , 2003, Current protocols in bioinformatics.

[44]  M. Murphey-Corb,et al.  Species‐specific variation in SIV disease progression between Chinese and Indian subspecies of rhesus macaque , 2002, Journal of medical primatology.

[45]  J. Lifson,et al.  SIVmac pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans , 2002, AIDS.

[46]  J. Sidney,et al.  Characterization of the Peptide-Binding Specificity of Mamu-B*17 and Identification of Mamu-B*17-Restricted Epitopes Derived from Simian Immunodeficiency Virus Proteins1 , 2002, The Journal of Immunology.

[47]  A Sette,et al.  Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. , 2001, Human immunology.

[48]  Todd M. Allen,et al.  CD8+ Lymphocytes from Simian Immunodeficiency Virus-Infected Rhesus Macaques Recognize 14 Different Epitopes Bound by the Major Histocompatibility Complex Class I Molecule Mamu-A*01: Implications for Vaccine Design and Testing , 2001, Journal of Virology.

[49]  John Sidney,et al.  Measurement of MHC/Peptide Interactions by Gel Filtration , 1999, Current protocols in immunology.

[50]  W. Hildebrand,et al.  C-terminal epitope tagging facilitates comparative ligand mapping from MHC class I positive cells. , 2000, Human immunology.

[51]  J. Sidney,et al.  Identification of Five Different Patr Class I Molecules That Bind HLA Supertype Peptides and Definition of Their Peptide Binding Motifs1 , 2000, The Journal of Immunology.

[52]  Alessandro Sette,et al.  Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia , 2000, Nature.

[53]  J. Sidney,et al.  Conserved MHC Class I Peptide Binding Motif Between Humans and Rhesus Macaques1 , 2000, The Journal of Immunology.

[54]  Todd M. Allen,et al.  Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef , 1999, Nature Medicine.

[55]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[56]  R A Houghten,et al.  Exploring immunological specificity using synthetic peptide combinatorial libraries. , 1999, Current opinion in immunology.

[57]  A Sette,et al.  Human class I supertypes and CTL repertoires extend to chimpanzees. , 1998, Journal of immunology.

[58]  Todd M. Allen,et al.  Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. , 1998, Journal of immunology.

[59]  C Oseroff,et al.  Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. , 1998, Virology.

[60]  D. Watkins,et al.  A high frequency of Mamu-A*01 in the rhesus macaque detected by polymerase chain reaction with sequence-specific primers and direct sequencing. , 1997, Tissue antigens.

[61]  A Sette,et al.  Two complementary methods for predicting peptides binding major histocompatibility complex molecules. , 1997, Journal of molecular biology.

[62]  A. Vitiello,et al.  Immunodominance analysis of CTL responses to influenza PR8 virus reveals two new dominant and subdominant Kb-restricted epitopes. , 1996, Journal of immunology.

[63]  M F del Guercio,et al.  Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. , 1996, Journal of immunology.

[64]  N. Letvin,et al.  Definition of human immunodeficiency virus type 1 gp120 and gp41 cytotoxic T-lymphocyte epitopes and their restricting major histocompatibility complex class I alleles in simian-human immunodeficiency virus-infected rhesus monkeys , 1996, Journal of virology.

[65]  A. Hughes,et al.  The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. , 1996, Journal of immunology.

[66]  M F del Guercio,et al.  Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. , 1996, Human immunology.

[67]  E. Adams,et al.  The Origins of HLA‐A,B,C Polymorphism , 1995, Immunological reviews.

[68]  M F del Guercio,et al.  Several HLA alleles share overlapping peptide specificities. , 1995, Journal of immunology.

[69]  A. Vitiello,et al.  The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. , 1994, Journal of immunology.

[70]  J. Sidney,et al.  Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. , 1994, Molecular immunology.

[71]  L. Foresman,et al.  Pathogenesis of SIVmac infection in Chinese and Indian rhesus macaques: effects of splenectomy on virus burden. , 1994, Virology.

[72]  A Sette,et al.  Definition of specific peptide motifs for four major HLA-A alleles. , 1994, Journal of immunology.

[73]  K. Tamura,et al.  The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. , 1992, Molecular biology and evolution.

[74]  T. Kindt,et al.  Animal models for acquired immunodeficiency syndrome. , 1992, Advances in immunology.

[75]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[76]  N. Pedersen,et al.  Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. , 1990, Science.

[77]  R. Desrosiers The simian immunodeficiency viruses. , 1990, Annual review of immunology.

[78]  P Parham,et al.  Structure, function, and diversity of class I major histocompatibility complex molecules. , 1990, Annual review of biochemistry.

[79]  C. Southwick,et al.  Partial recovery and a new population estimate of rhesus monkey populations in India , 1988, American journal of primatology.

[80]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[81]  B. Jordan,et al.  H—2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide , 1986, Nature.

[82]  A. McMichael,et al.  The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides , 1986, Cell.

[83]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.