A panel of TDP-43-regulated splicing events verifies loss of TDP-43 function in amyotrophic lateral sclerosis brain tissue

[1]  P. Wong,et al.  A fluid biomarker reveals loss of TDP-43 splicing repression in pre-symptomatic ALS , 2023, bioRxiv.

[2]  M. Nalls,et al.  Mis-spliced transcripts generate de novo proteins in TDP-43-related ALS/FTD , 2023, bioRxiv.

[3]  C. Link,et al.  TDP-43 knockdown in mouse model of ALS leads to dsRNA deposition, gliosis, and neurodegeneration in the spinal cord. , 2022, Cerebral cortex.

[4]  Emma L. Scotter,et al.  Transcriptional targets of amyotrophic lateral sclerosis/frontotemporal dementia protein TDP-43 – meta-analysis and interactive graphical database , 2022, Disease Models & Mechanisms.

[5]  Jane Y. Wu,et al.  The amyotrophic lateral sclerosis-linked protein TDP-43 regulates interleukin-6 cytokine production by human brain pericytes , 2022, Molecular and Cellular Neuroscience.

[6]  J. Winkelmann,et al.  Fast versus slow disease progression in amyotrophic lateral sclerosis–clinical and genetic factors at the edges of the survival spectrum , 2022, Neurobiology of Aging.

[7]  J. Douwes,et al.  Serum biomarkers of neuroinflammation and blood-brain barrier leakage in amyotrophic lateral sclerosis , 2022, BMC Neurology.

[8]  Anna L. Brown,et al.  TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A , 2022, Nature.

[9]  H. Kang,et al.  Microscopic examination of spatial transcriptome using Seq-Scope , 2021, Cell.

[10]  Caitlin M. Rodriguez,et al.  TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A , 2021, Nature.

[11]  G. Tucker-Kellogg,et al.  TDP-43 maximizes nerve conduction velocity by repressing a cryptic exon for paranodal junction assembly in Schwann cells , 2021, eLife.

[12]  N. Luscombe,et al.  Reactive astrocytes in ALS display diminished intron retention , 2021, Nucleic acids research.

[13]  F. Hirth,et al.  Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation , 2021, Nature Reviews Neuroscience.

[14]  Anna L. Brown,et al.  Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. , 2020, The Journal of clinical investigation.

[15]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[16]  Eddie B. Lee,et al.  Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons , 2019, Cell reports.

[17]  R. Rahbarghazi,et al.  Targeting pericytes for neurovascular regeneration , 2019, Cell Communication and Signaling.

[18]  M. Gos,et al.  Correction to: Splicing mutations in human genetic disorders: examples, detection, and confirmation , 2019, Journal of Applied Genetics.

[19]  Timothy A. Miller,et al.  Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia , 2019, bioRxiv.

[20]  Michael J. Steinbaugh,et al.  ALS IMPLICATED PROTEIN TDP-43 SUSTAINS LEVELS OF STMN2 A MEDIATOR OF MOTOR NEURON GROWTH AND REPAIR , 2019, Nature Neuroscience.

[21]  F. Rigo,et al.  Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration , 2018, Nature Neuroscience.

[22]  R. Faull,et al.  Markers for human brain pericytes and smooth muscle cells , 2018, Journal of Chemical Neuroanatomy.

[23]  I. Ferrer,et al.  Cryptic exon splicing function of TARDBP interacts with autophagy in nervous tissue , 2018, Autophagy.

[24]  M. Dragunow,et al.  Unique and shared inflammatory profiles of human brain endothelia and pericytes , 2018, Journal of Neuroinflammation.

[25]  D. Rowe,et al.  The genotype–phenotype landscape of familial amyotrophic lateral sclerosis in Australia , 2017, Clinical genetics.

[26]  P. Wong,et al.  Cryptic exon incorporation occurs in Alzheimer’s brain lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43 , 2017, Acta Neuropathologica.

[27]  J. Dittman,et al.  Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder , 2017, The Journal of clinical investigation.

[28]  M. Dragunow,et al.  Brain Pericytes As Mediators of Neuroinflammation. , 2017, Trends in pharmacological sciences.

[29]  P. Wong,et al.  Tdp-43 cryptic exons are highly variable between cell types , 2017, Molecular Neurodegeneration.

[30]  A. Emili,et al.  DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2 , 2016, Genes & development.

[31]  H. Braak,et al.  Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis , 2016, Acta Neuropathologica.

[32]  V. Plagnol,et al.  Quantitative analysis of cryptic splicing associated with TDP-43 depletion , 2016, bioRxiv.

[33]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[34]  E. S. Graham,et al.  TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function , 2016, Journal of Neuroinflammation.

[35]  J. Trojanowski,et al.  Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin , 2015, PloS one.

[36]  E. Buratti,et al.  TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways , 2015, Nucleic acids research.

[37]  P. Wong,et al.  TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD , 2015, Science.

[38]  J. Trojanowski,et al.  Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43 , 2015, Acta Neuropathologica.

[39]  R. Faull,et al.  An anti-inflammatory role for C/EBPδ in human brain pericytes , 2015, Scientific Reports.

[40]  Christine Mayr,et al.  Alternative 3'UTRs act as scaffolds to regulate membrane protein localization , 2015, Nature.

[41]  Robert H. Brown,et al.  Novel mutations support a role for Profilin 1 in the pathogenesis of ALS , 2015, Neurobiology of Aging.

[42]  K. Talbot,et al.  TARDBP pathogenic mutations increase cytoplasmic translocation of TDP-43 and cause reduction of endoplasmic reticulum Ca2+ signaling in motor neurons , 2015, Neurobiology of Disease.

[43]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[44]  R. Huganir,et al.  Dlg5 Regulates Dendritic Spine Formation and Synaptogenesis by Controlling Subcellular N-Cadherin Localization , 2014, The Journal of Neuroscience.

[45]  M. Dragunow,et al.  A role for human brain pericytes in neuroinflammation , 2014, Journal of Neuroinflammation.

[46]  W. Koh,et al.  Noninvasive in vivo monitoring of tissue-specific global gene expression in humans , 2014, Proceedings of the National Academy of Sciences.

[47]  Juan Li,et al.  DLG5 in Cell Polarity Maintenance and Cancer Development , 2014, International journal of biological sciences.

[48]  P. Rustin,et al.  Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the extramembrane arm of human mitochondrial complex I , 2014, FEBS letters.

[49]  P. Callaerts,et al.  TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? , 2014, Trends in molecular medicine.

[50]  Timothy Sterne-Weiler,et al.  Exon identity crisis: disease-causing mutations that disrupt the splicing code , 2014, Genome Biology.

[51]  Timothy Sterne-Weiler,et al.  Exon identity crisis: disease-causing mutations that disrupt the splicing code , 2014, Genome Biology.

[52]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[53]  Murray Grossman,et al.  Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis , 2013, Annals of neurology.

[54]  G. Sobue,et al.  Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. , 2013, Brain : a journal of neurology.

[55]  Gene W. Yeo,et al.  ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 , 2013, Proceedings of the National Academy of Sciences.

[56]  A. Kakita,et al.  Alteration of POLDIP3 Splicing Associated with Loss of Function of TDP-43 in Tissues Affected with ALS , 2012, PloS one.

[57]  Jesse D. Sengillo,et al.  Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[59]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[60]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[61]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[62]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[63]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[64]  S. Weber,et al.  TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6 , 2011, Molecular Neurodegeneration.

[65]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[66]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[67]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[68]  Thomas C. Südhof,et al.  RIM Proteins Activate Vesicle Priming by Reversing Autoinhibitory Homodimerization of Munc13 , 2011, Neuron.

[69]  Jernej Ule,et al.  TDP‐43 regulates its mRNA levels through a negative feedback loop , 2011, The EMBO journal.

[70]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[71]  S. Akbarian,et al.  The C-Terminal TDP-43 Fragments Have a High Aggregation Propensity and Harm Neurons by a Dominant-Negative Mechanism , 2010, PloS one.

[72]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[73]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[74]  Frederick P. Roth,et al.  Identification of Neuronal RNA Targets of TDP-43-containing Ribonucleoprotein Complexes , 2010, The Journal of Biological Chemistry.

[75]  J. Trojanowski,et al.  Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: A spectrum of TDP‐43 proteinopathies , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[76]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[77]  E. Buratti,et al.  Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies , 2010, The FEBS journal.

[78]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[79]  M. Neumann,et al.  Molecular Neuropathology of TDP-43 Proteinopathies , 2009, International journal of molecular sciences.

[80]  D. Geschwind,et al.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis , 2008, PLoS genetics.

[81]  M. Morita,et al.  Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2008, Annals of neurology.

[82]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[83]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[84]  M. Curtis,et al.  The collection and processing of human brain tissue for research , 2008, Cell and Tissue Banking.

[85]  R. Faull,et al.  Cellular composition of human glial cultures from adult biopsy brain tissue , 2007, Journal of Neuroscience Methods.

[86]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[87]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[88]  S. Reske,et al.  Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD , 2005, Annals of neurology.

[89]  P. Lockhart,et al.  Identification of the Human Ubiquitin Specific Protease 31 (USP31) Gene: Structure, Sequence and Expression Analysis , 2004, DNA sequence : the journal of DNA sequencing and mapping.

[90]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.

[91]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[92]  J. Smeitink,et al.  cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed. , 1998, Biochemical and biophysical research communications.

[93]  G. Struhl,et al.  Cis- acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos , 1988, Nature.

[94]  T. Curran,et al.  Removal of a 67-base-pair sequence in the noncoding region of protooncogene fos converts it to a transforming gene. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[95]  H. Braak,et al.  Anterior Cingulate Cortex TDP-43 Pathology in Sporadic Amyotrophic Lateral Sclerosis , 2018, Journal of neuropathology and experimental neurology.

[96]  E. Buratti Functional Significance of TDP-43 Mutations in Disease. , 2015, Advances in genetics.

[97]  Juan Li,et al.  DLG5 in Cell Polarity Maintenance and Cancer , 2014 .

[98]  E. Kieff,et al.  Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. , 2006, Cellular signalling.

[99]  B. Madras,et al.  Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression , 2002, Molecular Psychiatry.