A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi

High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3′- or 5′-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.

[1]  Markus Brosch,et al.  Accurate and sensitive peptide identification with Mascot Percolator. , 2009, Journal of proteome research.

[2]  Matthew Berriman,et al.  DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..

[3]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[4]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[5]  Matthew Berriman,et al.  Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database , 2008, Bioinform..

[6]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[7]  J. Vogel,et al.  Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq , 2008, PLoS genetics.

[8]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[9]  B. Kräutler,et al.  The Corrin Moiety of Coenzyme B12 is the Determinant for Switching the btuB Riboswitch of E. coli , 2008, Chembiochem : a European journal of chemical biology.

[10]  M. Kleerebezem,et al.  Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1 , 2008, Applied and Environmental Microbiology.

[11]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[12]  Stinus Lindgreen,et al.  WAR: Webserver for aligning structural RNAs , 2008, Nucleic Acids Res..

[13]  Zasha Weinberg,et al.  The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. , 2008, RNA.

[14]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[15]  Ferric C. Fang,et al.  Coordinate Regulation of Salmonella Pathogenicity Island 1 (SPI1) and SPI4 in Salmonella enterica Serovar Typhimurium , 2007, Infection and Immunity.

[16]  Jeffrey E. Barrick,et al.  The distributions, mechanisms, and structures of metabolite-binding riboswitches , 2007, Genome Biology.

[17]  I. Moll,et al.  In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA , 2007, Nucleic acids research.

[18]  O. Pellegrini,et al.  Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA , 2007, Nucleic acids research.

[19]  J. Wain,et al.  An H-NS-like Stealth Protein Aids Horizontal DNA Transmission in Bacteria , 2007, Science.

[20]  Jonathan P. Bollback,et al.  Exploring genomic dark matter: a critical assessment of the performance of homology search methods on noncoding RNA. , 2006, Genome research.

[21]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[22]  R. Breaker,et al.  Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. , 2005, Chemistry & biology.

[23]  G. Soukup,et al.  Ligand requirements for glmS ribozyme self-cleavage. , 2005, Chemistry & biology.

[24]  Vincent Moulton,et al.  A comparison of RNA folding measures , 2005, BMC Bioinformatics.

[25]  H. Caldwell,et al.  Comparative Genomic Analysis of Chlamydia trachomatis Oculotropic and Genitotropic Strains , 2005, Infection and Immunity.

[26]  Tao Han,et al.  Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential , 2005, BMC Bioinformatics.

[27]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[28]  Gordon K. Smyth,et al.  limmaGUI: A graphical user interface for linear modeling of microarray data , 2004, Bioinform..

[29]  H. Caldwell,et al.  Polymorphisms in the Chlamydia trachomatis Cytotoxin Locus Associated with Ocular and Genital Isolates , 2004, Infection and Immunity.

[30]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[31]  R. Maier,et al.  Respiratory Hydrogen Use by Salmonella enterica Serovar Typhimurium Is Essential for Virulence , 2004, Infection and Immunity.

[32]  Weida Tong,et al.  QA/QC: challenges and pitfalls facing the microarray community and regulatory agencies , 2004, Expert review of molecular diagnostics.

[33]  S. Falkow,et al.  Delineation of Upstream Signaling Events in the Salmonella Pathogenicity Island 2 Transcriptional Activation Pathway , 2004, Journal of bacteriology.

[34]  J. Wain,et al.  The role of prophage-like elements in the diversity of Salmonella enterica serovars. , 2004, Journal of molecular biology.

[35]  J. Puente,et al.  OmpR and LeuO Positively Regulate the Salmonella enterica Serovar Typhi ompS2 Porin Gene , 2004, Journal of bacteriology.

[36]  Jeffrey E. Barrick,et al.  Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. , 2004, Nucleic acids research.

[37]  K. Hantke Regulation of ferric iron transport in Escherichia coli K12: Isolation of a constitutive mutant , 2004, Molecular and General Genetics MGG.

[38]  C. Beuzón,et al.  The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. , 2003, Microbiology.

[39]  K. Hughes,et al.  The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL , 2003, Molecular microbiology.

[40]  J. Wain,et al.  Composition, Acquisition, and Distribution of the Vi Exopolysaccharide-Encoding Salmonella enterica Pathogenicity Island SPI-7 , 2003, Journal of bacteriology.

[41]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[42]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[43]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[44]  L. Bossi,et al.  Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella , 2001, Molecular microbiology.

[45]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[46]  K. Hughes,et al.  Translation/Secretion Coupling by Type III Secretion Systems , 2000, Cell.

[47]  James C. Sacchettini,et al.  Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase , 2000, Nature.

[48]  J. Slauch,et al.  Tissue-Specific Gene Expression Identifies a Gene in the Lysogenic Phage Gifsy-1 That Affects Salmonella enterica Serovar Typhimurium Survival in Peyer's Patches , 2000, Journal of bacteriology.

[49]  Elena Rivas,et al.  Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs , 2000, Bioinform..

[50]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Krogh,et al.  No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution. , 1999, Nucleic acids research.

[52]  L. Bossi,et al.  Inducible prophages contribute to Salmonella virulence in mice , 1999, Molecular microbiology.

[53]  J. Puente,et al.  Negative and positive regulation of the non‐osmoregulated ompS1 porin gene in Salmonella typhi : a novel regulatory mechanism that involves OmpR , 1999, Molecular microbiology.

[54]  W. Hardt,et al.  Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. , 1999, Infection and immunity.

[55]  J. Imperial,et al.  Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system. , 1998, Biochimica et biophysica acta.

[56]  W. Hardt,et al.  A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  G. Dougan,et al.  Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression , 1994, Infection and immunity.

[58]  G. Giordano,et al.  TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon , 1994, Molecular microbiology.

[59]  C. T. Parker,et al.  Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus , 1990, Journal of bacteriology.

[60]  K. Krohn,et al.  Effects of pyocyanine, a phenazine dye from Pseudomonas aeruginosa, on oxidative burst and bacterial killing in human neutrophils , 1989, Infection and immunity.

[61]  J. Galán,et al.  Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Dougan,et al.  Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo , 1989, Infection and immunity.

[63]  B. Magasanik,et al.  Gene order of the histidine utilization (hut) operons in Klebsiella aerogenes , 1975, Journal of bacteriology.