Spark, an application based on Serendipitous Knowledge Discovery

Findings from information-seeking behavior research can inform application development. In this report we provide a system description of Spark, an application based on findings from Serendipitous Knowledge Discovery studies and data structures known as semantic predications. Background information and the previously published IF-SKD model (outlining Serendipitous Knowledge Discovery in online environments) illustrate the potential use of information-seeking behavior in application design. A detailed overview of the Spark system illustrates how methodologies in design and retrieval functionality enable production of semantic predication graphs tailored to evoke Serendipitous Knowledge Discovery in users.

[1]  Philip Hider,et al.  Search goal revision in models of information retrieval , 2006, J. Inf. Sci..

[2]  Ann Blandford,et al.  Coming across information serendipitously - Part 2: A classification framework , 2012, J. Documentation.

[3]  Wan Mohd Nazmee Wan Zainon,et al.  GUI design based on cognitive psychology: Theoretical, empirical and practical approaches , 2012, 2012 8th International Conference on Computing Technology and Information Management (NCM and ICNIT).

[4]  Jacek Gwizdka,et al.  Distribution of cognitive load in Web search , 2010, J. Assoc. Inf. Sci. Technol..

[5]  Trevor Cohen,et al.  EpiphaNet: An Interactive Tool to Support Biomedical Discoveries , 2010, Journal of biomedical discovery and collaboration.

[6]  Nigel Ford,et al.  Serendipity and information seeking: an empirical study , 2003, J. Documentation.

[7]  Marcelo Fiszman,et al.  The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text , 2003, J. Biomed. Informatics.

[8]  Jessica Chang,et al.  Applying Cognitive Science Research in Graphical User Interface ( GUI ) , 2005 .

[9]  Sanda Erdelez,et al.  Investigation of information encountering in the controlled research environment , 2004, Inf. Process. Manag..

[10]  Robert K. Merton,et al.  The Bearing of Empirical Research upon the Development of Social Theory , 1948 .

[11]  Jannica Heinström Psychological factors behind incidental information acquisition , 2006 .

[12]  J. A. Fisher Fish Oil , 1988, The Lancet.

[13]  Russell Beale,et al.  Supporting serendipity: Using ambient intelligence to augment user exploration for data mining and web browsing , 2007, Int. J. Hum. Comput. Stud..

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  P. Manzine,et al.  Platelet a disintegrin and metallopeptidase 10 expression correlates with clock drawing test scores in Alzheimer's disease , 2014, International journal of geriatric psychiatry.

[16]  Mary Czerwinski,et al.  Web page design: implications of memory, structure and scent for information retrieval , 1998, CHI.

[17]  Halil Kilicoglu,et al.  Semantic MEDLINE: A web application for managing the results of PubMed searches , 2008, SMBM 2008.

[18]  A. Ludwig,et al.  The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. , 2009, Seminars in cell & developmental biology.

[19]  Elena Maceviciute Review of : Theories of information behavior. Medford, NJ: Information Today, Inc. 2005 , 2006 .

[20]  David Ellis,et al.  Serendipity and its study , 2014, J. Documentation.

[21]  T. Peyrard,et al.  Gene conversion events between GYPB and GYPE abolish expression of the S and s blood group antigens , 2015, Vox sanguinis.

[22]  Tuck Wah Leong,et al.  Abdicating choice: the rewards of letting go , 2008, Digit. Creativity.

[23]  Trevor Cohen,et al.  Discovery by scent: Discovery browsing system based on the Information Foraging Theory , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops.

[24]  Marcelo Fiszman,et al.  Framing serendipitous information‐seeking behavior for facilitating literature‐based discovery: A proposed model , 2014, J. Assoc. Inf. Sci. Technol..

[25]  Dongwook Shin,et al.  Clustering cliques for graph-based summarization of the biomedical research literature , 2013, BMC Bioinformatics.

[26]  M. Tribus Information Theory as the Basis for Thermostatics and Thermodynamics , 1961 .

[27]  W. Buxton Human-Computer Interaction , 1988, Springer Berlin Heidelberg.

[28]  Olivier Bodenreider,et al.  Exploring semantic groups through visual approaches , 2003, J. Biomed. Informatics.

[29]  D. Swanson Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge , 2015, Perspectives in biology and medicine.

[30]  Victoria L. Rubin,et al.  Promoting serendipity online: recommendations for tool design , 2012, iConference '12.

[31]  Alan J. Dix Human-Computer Interaction , 2018, Encyclopedia of Database Systems.

[32]  Alan R. Aronson,et al.  Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program , 2001, AMIA.

[33]  Delia Neuman,et al.  High school students' Information seeking and use for class projects , 2007 .

[34]  D. Lindberg,et al.  The Unified Medical Language System , 1993, Methods of Information in Medicine.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Aftab Iqbal Fostering Serendipity through Big Linked Data , 2013 .

[37]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[38]  Victoria L. Rubin,et al.  Facets of serendipity in everyday chance encounters: a grounded theory approach to blog analysis , 2011, Inf. Res..

[39]  J. Cechetto,et al.  Serendipitous discovery of 2-((phenylsulfonyl)methyl)-thieno[3,2-d]pyrimidine derivatives as novel HIV-1 replication inhibitors. , 2014, Bioorganic & medicinal chemistry letters.

[40]  Ann Blandford,et al.  Coming across information serendipitously - Part 1: A process model , 2012, J. Documentation.

[41]  O. Glasser W. C. Roentgen and the discovery of the Roentgen rays. , 1995 .

[42]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[43]  Elaine Toms,et al.  Information interaction: Providing a framework for information architecture , 2002, J. Assoc. Inf. Sci. Technol..

[44]  Delia Neuman,et al.  High school students' Information seeking and use for class projects , 2007, J. Assoc. Inf. Sci. Technol..

[45]  Marcelo Fiszman,et al.  A Literature-Based Assessment of Concept Pairs as a Measure of Semantic Relatedness , 2013, AMIA.

[46]  Joseph Mendola,et al.  From the Good , 2014 .

[47]  Marcelo Fiszman,et al.  Graph-based methods for discovery browsing with semantic predications. , 2011, AMIA ... Annual Symposium proceedings. AMIA Symposium.

[48]  Oscar de Bruijn,et al.  A New Framework for Theory-Based Interaction Design Applied to Serendipitous Information Retrieval , 2008, TCHI.

[49]  Gerald L. Lohse,et al.  The role of working memory on graphical information processing , 1997, Behav. Inf. Technol..

[50]  Marcelo Fiszman,et al.  Semantic MEDLINE for Discovery Browsing: Using Semantic Predications and the Literature-Based Discovery Paradigm to Elucidate a Mechanism for the Obesity Paradox , 2013, AMIA.

[51]  Sabeen Durrani,et al.  Applying Cognitive Psychology to User Interfaces , 2009, IHCI.