Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification

[1]  Wenda Song,et al.  Facile fabrication of lightweight mullite fiber/phenolic ablator with low thermal conductivity via ambient pressure impregnation , 2021 .

[2]  Rubing Zhang,et al.  Lightweight, flexible, and heat‐insulated phenolic impregnated carbon ablator (PICA) with adjustable flexibility and high compressive resilience property , 2021, Journal of Applied Polymer Science.

[3]  Xinghong Zhang,et al.  Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection , 2021 .

[4]  Zhanhu Guo,et al.  Layer-by-layer constructing interface with rigid-flexible transition structure for improving interfacial adhesion of PBO fiber composites , 2020 .

[5]  P. Naphon,et al.  Thermal, mechanical, and electrical properties of rubber latex with TiO2 nanoparticles , 2020 .

[6]  Obinna Uyanna,et al.  Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects , 2020 .

[7]  Yang Fan,et al.  Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers , 2020 .

[8]  Liqun Zhang,et al.  Fabrication of natural rubber dielectric elastomers with enhanced thermal conductivity via dopamine chemistry , 2019 .

[9]  Tiejun Wang,et al.  Compressible, Fatigue Resistant, and Pressure-Sensitive Carbon Aerogels Developed with a Facile Method for Sensors and Electrodes , 2019, ACS Sustainable Chemistry & Engineering.

[10]  Y. Zhang,et al.  Studying the mechanisms of natural rubber pyrolysis gas generation using RMD simulations and TG-FTIR experiments , 2019, Energy Conversion and Management.

[11]  A. Bismarck,et al.  Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar" interphase , 2018 .

[12]  T. Jiao,et al.  Simultaneous improvement of interfacial strength and toughness between carbon fiber and epoxy by introducing amino functionalized ZrO2 on fiber surface , 2018, Materials & Design.

[13]  H. Wagner,et al.  Intermittent beading in fiber composites , 2018 .

[14]  Shifeng Wang,et al.  Recycling the nanostructured carbon from waste tires , 2018 .

[15]  Chul B. Park,et al.  Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties , 2017 .

[16]  Yih-Kanq Chen,et al.  Arcjet Tests and Thermal Response Analysis for Dual-Layer Woven Carbon Phenolic , 2017 .

[17]  Wang Yiqun,et al.  The Behavior of Acid Treating Carbon Fiber and the Mechanical Properties and Thermal Conductivity of Phenolic Resin Matrix Composites , 2017 .

[18]  S. Goyanes,et al.  Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites , 2017 .

[19]  Xinghong Zhang,et al.  Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure , 2017 .

[20]  V. Strezov,et al.  Fuel production from pyrolysis of natural and synthetic rubbers , 2017 .

[21]  J. Kenny,et al.  Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review , 2016 .

[22]  Y. Mai,et al.  3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites , 2015 .

[23]  Robert D. Braun,et al.  Inverse Estimation of the Mars Science Laboratory Entry Aeroheating and Heatshield Response , 2015 .

[24]  B. Sheldon,et al.  Carbon Nanotube Pullout, Interfacial Properties, and Toughening in Ceramic Nanocomposites: Mechanistic Insights from Single Fiber Pullout Analysis , 2015 .

[25]  Karl T. Edquist,et al.  Development of the Mars Science Laboratory Heatshield Thermal Protection System , 2014 .

[26]  Hejun Li,et al.  Ablation behavior and mechanism of C/C–ZrC–SiC composites under an oxyacetylene torch at 3000 °C , 2013 .

[27]  Parul Agrawal,et al.  Fracture in Phenolic Impregnated Carbon Ablator , 2011 .

[28]  J. Tirillò,et al.  Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties , 2010 .

[29]  Kerry A. Trumble,et al.  Postflight Aerothermal Analysis of Stardust Sample Return Capsule , 2010 .

[30]  J. Kenny,et al.  Degradation behaviour of a composite material for thermal protection systems Part III Char characterization , 2000 .

[31]  Daniel J. Rasky,et al.  Thermal Response and Ablation Characteristics of Lightweight Ceramic Ablators , 1994 .

[32]  R. Pekala,et al.  Thermal Conductivity of Monolithic Organic Aerogels , 1992, Science.