Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction

The approximate equivalence between the dual-phase-lagging heat conduction model and the Fourier heat conduction in porous media subject to lack of local thermal equilibrium suggested the possibility of thermal oscillations and resonance. We demonstrate that the physical conditions necessary for such thermal waves and, possibly resonance, to materialize are not attainable in a porous slab subject to constant temperature conditions applied on the boundaries

[1]  Michel Quintard,et al.  Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments , 1995 .

[2]  Peter Vadasz,et al.  Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction , 2005 .

[3]  T. Qiu,et al.  Short-pulse laser heating on metals , 1992 .

[4]  S. Kim,et al.  Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium , 2002 .

[5]  Kambiz Vafai,et al.  Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media , 1994 .

[6]  A. Kuznetsov,et al.  Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium , 2002 .

[7]  Mingtian Xu,et al.  Well-posedness and solution structure of dual-phase-lagging heat conduction , 2001 .

[8]  Ioan Pop,et al.  Free convection in a square porous cavity using a thermal nonequilibrium model , 2002 .

[9]  Da Yu Tzou,et al.  Temperature-dependent thermal lagging in ultrafast laser heating , 2001 .

[10]  Paul J. Antaki Solution for non-Fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux , 1998 .

[11]  D. Tzou A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales , 1995 .

[12]  Mingtian Xu,et al.  Well-posedness of dual-phase-lagging heat conduction equation: higher dimensions , 2002 .

[13]  D. Nield A note on the modeling of local thermal non-equilibrium in a structured porous medium , 2002 .

[14]  Kambiz Vafai,et al.  Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions , 2002 .

[15]  Transient response of non-thermal equilibrium packed beds , 1999 .

[16]  The implications of the thermal equilibrium assumption for surrounding-driven steady conduction within a saturated porous medium layer , 1999 .

[17]  Mingtian Xu,et al.  Thermal oscillation and resonance in dual-phase-lagging heat conduction , 2002 .

[18]  D. Rees,et al.  Onset of Darcy-Benard convection using a thermal non-equilibrium model , 2002 .

[19]  Andrey V. Kuznetsov,et al.  A perturbation solution for heating a rectangular sensible heat storage packed bed with a constant temperature at the walls , 1997 .

[20]  Kambiz Vafai,et al.  On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number , 1999 .

[21]  Andrey V. Kuznetsov,et al.  THERMAL NONEQUILIBRIUM FORCED CONVECTION IN POROUS MEDIA , 1998 .

[22]  D. Rees,et al.  Vertical free convective boundary-layer flow in a porous medium using a thermal nonequilibrium model: Elliptical effects , 2003 .

[23]  A. Haji-Sheikh,et al.  A unified solution for heat conduction in thin films , 1999 .