Color orthogonal local binary patterns combination for image region description ( Technical Report )

Visual content description is a key issue for machine-based image analysis and understanding. A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. In this paper, we propose several new local descriptors based on color orthogonal local binary patterns combination (OLBPC) for image region description. The aim is to increase both discriminative power and photometric invariance properties of the original LBP while keeping its computational efficiency. The experiments in three different applications show that the proposed descriptors outperform the popular SIFT and CS-LBP, and get comparable or even slightly better performances than the state-of-the-art color SIFT descriptors. Meanwhile, they could provide complementary information to the color SIFT, because a fusion of these two kinds of descriptors is found to perform clearly better than either of the two separately. Moreover, the proposed descriptors are more computationally efficient than the color SIFT (about 2 times faster). KeywordsLocal descriptor; Region description; Orthogonal local binary patterns combination; Color LBP descriptor; CSLBP; SIFT; Image matching; Object recognition; Scene classification

[1]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[2]  GeversTheo,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010 .

[3]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[4]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[5]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[7]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[9]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[10]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[11]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[12]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[14]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[15]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[16]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[17]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Andrew Zisserman,et al.  Scene Classification Using a Hybrid Generative/Discriminative Approach , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Di Huang,et al.  Local Binary Patterns and Its Application to Facial Image Analysis: A Survey , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[20]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[21]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[22]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  M. Topi,et al.  Texture classification by multi-predicate local binary pattern operators , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[24]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[25]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[26]  Chee Sun Won,et al.  Efficient use of local edge histogram descriptor , 2000, MULTIMEDIA '00.

[27]  Matti Pietikäinen,et al.  Robust Texture Classification by Subsets of Local Binary Patterns , 2000, ICPR.

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[31]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).