High-performance Fe(Se,Te) films on chemical CeO2-based buffer layers

[1]  K. Iida,et al.  K-doped Ba122 epitaxial thin film on MgO substrate by buffer engineering , 2022, Superconductor Science and Technology.

[2]  M. Kowalska,et al.  Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product , 2022, Scientific Reports.

[3]  Z. Xing,et al.  Effects of Te- and Fe-doping on the superconducting properties in FeySe1−xTex thin films , 2021, Scientific Reports.

[4]  G. Celentano,et al.  All-Chemical YBCO-Based Architecture Using a Simplified Multilayer Buffer Deposition , 2022, IEEE transactions on applied superconductivity.

[5]  G. Celentano,et al.  Chemical CeO2-Based Buffer Layers for Fe(Se,Te) Films , 2022, IEEE transactions on applied superconductivity.

[6]  G. Celentano,et al.  Proton Irradiation Effects on the Superconducting Properties of Fe(Se,Te) Thin Films , 2022, IEEE Transactions on Applied Superconductivity.

[7]  Yanwei Ma,et al.  Angular dependence of the critical current density in FeSe0.5Te0.5 thin films on metal substrates , 2021, Superconductor Science and Technology.

[8]  G. Sotgiu,et al.  CeO2-based buffer layers via chemical solution deposition: Critical issues and latest developments , 2021 .

[9]  V. Braccini,et al.  Pinning, Flux Flow Resistivity, and Anisotropy of Fe(Se,Te) Thin Films From Microwave Measurements Through a Bitonal Dielectric Resonator , 2020, IEEE Transactions on Applied Superconductivity.

[10]  K. Nielsch,et al.  Comparative study of Fe(Se,Te) thin films on flexible coated conductor templates and single-crystal substrates , 2021, Superconductor Science and Technology.

[11]  L. Tortora,et al.  Interaction between untreated SrTiO3 substrates and solution-derived YBa2Cu3O7-δ films , 2020 .

[12]  A. Ichinose,et al.  Twofold role of columnar defects in iron based superconductors , 2020, Superconductor Science and Technology.

[13]  G. Celentano,et al.  Epitaxial Zr-doped CeO2 films by chemical solution deposition as buffer layers for Fe(Se,Te) film growth , 2020, Superconductor Science and Technology.

[14]  S. De Santis,et al.  Elucidation of the decomposition reactions of low-fluorine YBa2Cu3O7-x precursors during film pyrolysis , 2020, Journal of Analytical and Applied Pyrolysis.

[15]  J. Hänisch,et al.  Fe-based superconducting thin films—preparation and tuning of superconducting properties , 2019, Superconductor Science and Technology.

[16]  G. Celentano,et al.  Fe(Se,Te) coated conductors deposited on simple rolling-assisted biaxially textured substrate templates , 2019, Superconductor Science and Technology.

[17]  G. Sotgiu,et al.  Zirconium distribution in solution-derived BaZrO3 - YBa2Cu3O7-δ epitaxial thin films studied by X-ray photoelectron spectroscopy , 2019, Thin Solid Films.

[18]  S. Ricart,et al.  Growth of all-chemical high critical current YBa2Cu3O7−δ thick films and coated conductors , 2018, Superconductor Science and Technology.

[19]  N. Yanagi,et al.  High temperature superconductors for fusion magnets , 2018, Nuclear Fusion.

[20]  K. Iida,et al.  Recent progress in thin-film growth of Fe-based superconductors: superior superconductivity achieved by thin films , 2018, Superconductor Science and Technology.

[21]  R. Lamanna,et al.  Solution Refining for MOD-YBCO Optimization: An NMR Study , 2018, IEEE Transactions on Applied Superconductivity.

[22]  H. Hosono,et al.  Recent advances in iron-based superconductors toward applications , 2017, 1710.08574.

[23]  Margaret M. Ratcliff,et al.  Study of the Flux Pinning Landscape of YBCO Thin Films With Single and Mixed Phase Additions BaMO3 + Z: M = Hf, Sn, Zr and Z = Y2O3, Y211 , 2017, IEEE Transactions on Applied Superconductivity.

[24]  R. Lamanna,et al.  Aging of Precursor Solutions Used for YBCO Films Chemical Solution Deposition: Study of Mechanisms and Effects on Film Properties , 2016, IEEE Transactions on Applied Superconductivity.

[25]  M. Greenwald,et al.  Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a More Attractive Fusion Energy Development Path , 2016 .

[26]  R. Hühne,et al.  Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films , 2015, Scientific Reports.

[27]  J. Jian,et al.  A simplified superconducting coated conductor design with Fe-based superconductors on glass and flexible metallic substrates , 2015 .

[28]  A. Malagoli,et al.  Application potential of Fe-based superconductors , 2015 .

[29]  L. Schultz,et al.  Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films , 2015, 1504.04004.

[30]  C. Grovenor,et al.  Structural parameters affecting superconductivity in iron chalcogenides: a review , 2014 .

[31]  Xavier Obradors,et al.  Coated conductors for power applications: materials challenges , 2014 .

[32]  L. Schultz,et al.  Intrinsic pinning and the critical current scaling of clean epitaxial Fe(Se,Te) thin films , 2013, 1303.2586.

[33]  Qiang Li,et al.  High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla , 2013, Nature Communications.

[34]  R. Fittipaldi,et al.  Corrigendum: A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials , 2012, 1205.3618.

[35]  F. Balakirev,et al.  Significant enhancement of upper critical fields by doping and strain in iron-based superconductors , 2011, 1108.5194.

[36]  G. Burnell,et al.  Analysis of FeySe1 − xTex thin films grown by radio frequency sputtering , 2011 .

[37]  I. Obaidat,et al.  Applications of YBCO-coated conductors: a focus on the chemical solution deposition method , 2010 .

[38]  J. H. Yang,et al.  Weak anisotropy of the superconducting upper critical field in Fe 1.11 Te 0.6 Se 0.4 single crystals , 2009, 0909.5328.

[39]  Y. Morilla,et al.  All chemical YBa_2Cu_3O_7 superconducting multilayers: Critical role of CeO_2 cap layer flatness , 2009 .

[40]  V. Braccini,et al.  Magnetic field dependence of vortex activation energy: A comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors , 2008, 0803.2078.

[41]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[42]  J. Arbiol,et al.  Growth Mechanism, Microstructure, and Surface Modification of Nanostructured CeO2 Films by Chemical Solution Deposition , 2006 .

[43]  Xiaoping Li,et al.  Improved YBCO coated conductors using alternate buffer architectures , 2005, IEEE Transactions on Applied Superconductivity.

[44]  S. Horii,et al.  Low temperature growth of high-J(c) Sm1+xBa2-xCu3Oy films , 2004 .

[45]  R. Steiner,et al.  Properties of CeO2 and CeO2−x films Part II. High temperature properties , 1992 .

[46]  Harry L. Tuller,et al.  Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals , 1979 .

[47]  D. Dew-Hughes Flux pinning mechanisms in type II superconductors , 1974 .