Ultradirectional optical nanoantennas with high radiation efficiency by core–shell nanoparticles

Abstract. A Yagi-Uda-like optical nanoantenna consisting of metallo-dielectric core–shell nanoparticles has been proposed, and its major characteristics have been investigated theoretically and numerically. Compared with all-dielectric nanoantennas and plasmonic nanoantennas, the proposed nanoantenna may exhibit better directivity and Purcell factor. In addition, the antenna shows high radiation efficiency over 65% for broadband operation as well. This core–shell nanoantenna, allowing a more compact design, may find potential applications in nanoscale lasers, photovoltaic, and energy-harvesting devices.

[1]  Yuri S. Kivshar,et al.  All-dielectric optical nanoantennas. , 2012, Optics express.

[2]  S. Maslovski,et al.  Modeling of isotropic backward-wave materials composed of resonant spheres , 2006 .

[3]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[4]  Yuri S. Kivshar,et al.  Huygens optical elements and Yagi—Uda nanoantennas based on dielectric nanoparticles , 2011 .

[5]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[6]  Xiaofeng Li,et al.  Improved optical absorption of silicon single-nanowire solar cells by off-axial core/shell design , 2015 .

[7]  Nicolas Bonod,et al.  Promoting Magnetic Dipolar Transition in Trivalent Lanthanide Ions with Lossless Mie Resonances , 2012 .

[8]  Peter Nordlander,et al.  Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. , 2011, Journal of the American Chemical Society.

[9]  Alessandro Salandrino,et al.  Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas , 2009 .

[10]  Robert C. Hansen,et al.  Electrically Small, Superdirective, and Superconducting Antennas , 2006 .

[11]  Sergei A. Tretyakov,et al.  An antenna model for the Purcell effect , 2015, Scientific Reports.

[12]  A. Koenderink On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.

[13]  Q. Gong,et al.  Enhancing molecule fluorescence with asymmetrical plasmonic antennas. , 2013, Nanoscale.

[14]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[15]  Richard W. Ziolkowski,et al.  Near-Field Directive Beams From Passive and Active Asymmetric Optical Nanoantennas , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[17]  Alexander Krasnok,et al.  Enhancement of artificial magnetism via resonant bianisotropy , 2015, Scientific Reports.

[18]  Yan Li,et al.  Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles , 2015, Scientific Reports.

[19]  Mario Agio,et al.  Nano-optics: The Purcell factor of nanoresonators , 2013 .

[20]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[21]  Nader Engheta,et al.  Hertzian plasmonic nanodimer as an efficient optical nanoantenna , 2008 .

[22]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[23]  Harald Giessen,et al.  Directing Light Emission from Quantum Dots , 2010, Science.

[24]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[25]  Nicolas Bonod,et al.  Multipole methods for nanoantennas design: applications to Yagi-Uda configurations , 2011 .

[26]  Naomi J. Halas,et al.  Light scattering from dipole and quadrupole nanoshell antennas , 1999 .

[27]  Eduardo A. Coronado,et al.  Size Optimization of Iron Oxide@Noble Metal Core–Shell Nanohybrids for Photothermal Applications , 2016 .

[28]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[29]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[30]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[31]  Ramon Gonzalo,et al.  Superbackscattering from single dielectric particles , 2015 .

[32]  Pei Wang,et al.  Metallo-dielectric hybrid antenna for high Purcell factor and radiation efficiency. , 2014, Optics express.

[33]  Nader Engheta,et al.  Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and∕or double-positive metamaterial layers , 2005 .

[34]  H. G. Jerrard,et al.  Handbook of optical constant of solids: Edited by E.D. Palik Academic Press, 1985, pp xviii + 804, £110, $110 , 1986 .

[35]  Wei Liu,et al.  Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. , 2012, ACS nano.

[36]  L. Novotný,et al.  Antennas for light , 2011 .

[37]  Naomi J Halas,et al.  Connecting the dots: Reinventing optics for nanoscale dimensions , 2009, Proceedings of the National Academy of Sciences.

[38]  J. Aizpurua,et al.  Dielectric antennas--a suitable platform for controlling magnetic dipolar emission. , 2012, Optics express.

[39]  Yuri S. Kivshar,et al.  Experimental verification of the concept of all-dielectric nanoantennas , 2012 .

[40]  P. Ginzburg,et al.  Nano-plasmonic antennas in the near infrared regime , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[42]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[43]  Harald Giessen,et al.  Near-field dynamics of optical Yagi-Uda nanoantennas. , 2011, Nano letters.

[44]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[45]  S. D. Campbell,et al.  Simultaneous Excitation of Electric and Magnetic Dipole Modes in a Resonant Core-Shell Particle at Infrared Frequencies to Achieve Minimal Backscattering , 2013, IEEE Journal of Selected Topics in Quantum Electronics.