Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules

The generalized gradient-approximated (GGA) energy functionals used in density functional theory (DFT) provide accurate results for many different properties. However, one of their weaknesses lies in the fact that Van der Waals forces are not described. In spite of this, it is possible to obtain reliable long-range potential energy surfaces within DFT. In this paper, we use time-dependent density functional response theory to obtain the Van der Waals dispersion coefficients C6, C7, and C8 (both isotropic and anisotropic). They are calculated from the multipole polarizabilities at imaginary frequencies of the two interacting molecules. Alternatively, one might use one of the recently-proposed Van der Waals energy functionals for well-separated systems, which provide fairly good approximations to our isotropic results. Results with the local density approximation (LDA), Becke–Perdew (BP) GGA and the Van Leeuwen–Baerends (LB94) exchange-correlation potentials are presented for the multipole polarizabilities ...

[1]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[2]  P. Wormer,et al.  Ab initio dispersion coefficients for interactions involving rare-gas atoms , 1992 .

[3]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[4]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[5]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  L. Bartolotti,et al.  Quadrupole and octupole Cauchy moments of the atoms through argon , 1994 .

[7]  D. M. Bishop,et al.  Dipole, quadrupole, octupole and dipole-octupole polarizabilities at real and imaginary frequencies for H, He, and H2 and the dispersion-energy coefficients for interactions between them , 1993 .

[8]  D. Langreth,et al.  Density functional theory including Van Der Waals forces , 1995 .

[9]  G. Maroulis Quadrupole polarizability and hyperpolarizability of carbon monoxide , 1992 .

[10]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[11]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[12]  P. Wormer,et al.  Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3 , 1989 .

[13]  N. Hush,et al.  Finite field method calculations. VI. Raman scatering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculations for CH4 , 1980 .

[14]  D. Langreth,et al.  Density Functional for van der Waals Forces at Surfaces. , 1996, Physical review letters.

[15]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[16]  Bradley P. Dinte,et al.  Constraint satisfaction in local and gradient susceptibility approximations: Application to a van der Waals density functional. , 1996, Physical review letters.

[17]  P. Wormer,et al.  Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr , 1993 .

[18]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[19]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[20]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[21]  A. Thakkar,et al.  Quadrupole polarizabilities and hyperpolarizabilities of Kr and Xe from fourth‐order many‐body perturbation theory calculations , 1988 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[24]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[25]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[26]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[27]  Sean A. C. McDowell,et al.  Molecular polarisabilities - a comparison of density functional theory with standard ab initio methods , 1995 .

[28]  P. Wormer,et al.  Ab initio studies of the interactions in Van der Waals molecules , 1980 .

[29]  G. Maroulis Electric Polarizability and Hyperpolarizability of Carbon Monoxide , 1996 .

[30]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[31]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[32]  A. Thakkar,et al.  A coupled cluster calculation of the quadrupole polarizability of CO , 1990 .

[33]  J. G. Snijders,et al.  APPLICATION OF TIME-DEPENDENT DENSITY FUNCTIONAL RESPONSE THEORY TO RAMAN SCATTERING , 1996 .

[34]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[35]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[36]  G. Maroulis Electric multipole moments and quadrupole polarizability of chlorine , 1992 .

[37]  J. G. Snijders,et al.  Improved density functional theory results for frequency‐dependent polarizabilities, by the use of an exchange‐correlation potential with correct asymptotic behavior , 1996 .

[38]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[39]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[40]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[41]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .

[42]  H. Ågren,et al.  Direct atomic orbital based self‐consistent‐field calculations of nonlinear molecular properties. Application to the frequency dependent hyperpolarizability of para‐nitroaniline , 1993 .

[43]  Gerald D. Mahan,et al.  Local density theory of polarizability , 1990 .

[44]  Ashok Kumar,et al.  Reliable isotropic and anisotropic dipolar dispersion energies, evaluated using constrained dipole oscillator strength techniques, with application to interactions involving H2, N2, and the rare gases , 1990 .

[45]  Trygve Helgaker,et al.  Efficient parallel implementation of response theory: Calculations of the second hyperpolarizability of polyacenes , 1996 .

[46]  L. Bartolotti Variation‐perturbation theory within a time‐dependent Kohn–Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients , 1984 .

[47]  Ashok Kumar,et al.  RELIABLE ISOTROPIC AND ANISOTROPIC DIPOLE PROPERTIES, AND DIPOLAR DISPERSION ENERGY COEFFICIENTS, FOR CO EVALUATED USING CONSTRAINED DIPOLE OSCILLATOR STRENGTH TECHNIQUES , 1994 .