PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis

A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given.

[1]  Tobias Baselt,et al.  Application of a microchip laser-pumped photonic crystal fiber supercontinuum source for high-sensitive cavity ring down optical loss measurements , 2009, LASE.

[2]  Ole Bang,et al.  Supercontinuum generation in photonic crystal fibres , 2007 .

[3]  H. A. Schwettman,et al.  PULSE-STACKED CAVITY RING-DOWN SPECTROSCOPY , 1999 .

[4]  T. Hyotylainen Determination of Flame Retardants in Environmental Samples , 2006 .

[5]  H. Hinterhuber,et al.  Applications of Breath Gas Analysis in Addiction Medicine—Preliminary Results , 2009, Substance use & misuse.

[6]  Jeffirey I. Steinfeid New spectroscopic methods for environmental measurement and monitoring , 2010 .

[7]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[8]  Giel Berden,et al.  Cavity ring-down spectroscopy : techniques and applications , 2009 .

[9]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[10]  R. Cataneo,et al.  Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study , 1999, The Lancet.

[11]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[12]  G. Meijer,et al.  A Fourier Transform Cavity Ring Down Spectrometer , 1996, Fourier Transform Spectroscopy.

[13]  Bogusław Buszewski,et al.  Human exhaled air analytics: biomarkers of diseases. , 2007, Biomedical chromatography : BMC.

[14]  Xiang Zhang,et al.  Overview: MURI Center on spectroscopic and time domain detection of trace explosives in condensed and vapor phases , 2003, SPIE Defense + Commercial Sensing.

[15]  Daniele Romanini,et al.  Cavity ringdown spectroscopy: broad band absolute absorption measurements , 1997 .

[16]  J. Hodges,et al.  Response of a ring-down cavity to an arbitrary excitation , 1996 .

[17]  Adam Czyżewski,et al.  Cavity ring-down spectrography , 2001 .

[18]  Edward H. Wahl,et al.  Real-time trace ambient ammonia monitor for haze prevention , 2007, Photomask Japan.

[19]  J. Streicher,et al.  Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[20]  C. Kaminski,et al.  Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources. , 2010, The Analyst.

[21]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[22]  T A Birks,et al.  Long-wavelength continuum generation about the second dispersion zero of a tapered fiber. , 2002, Optics letters.

[23]  Jun Ye,et al.  Cavity-enhanced direct frequency comb spectroscopy: technology and applications. , 2010, Annual review of analytical chemistry.

[24]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[25]  L. Provino,et al.  Compact broadband continuum source based on microchip laser pumped microstructured fibre , 2001 .

[26]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[27]  Philip St. J. Russell,et al.  Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber , 2010 .

[28]  Roderic L. Jones,et al.  Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes , 2008 .

[29]  C F Kaminski,et al.  Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. , 2008, Optics express.

[30]  Robert W. Field,et al.  New spectroscopic methods for environmental measurement and monitoring , 1999, Optics East.

[31]  J. D. Ayers,et al.  Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection. , 2005, Applied optics.

[32]  G. Schmidl,et al.  Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source. , 2009, Applied optics.

[33]  Roderic L. Jones,et al.  Broadband cavity ringdown spectroscopy of the NO3 radical , 2001 .

[34]  J. Wolf,et al.  White-light symmetrization by the interaction of multifilamenting beams , 2009 .

[35]  David Smith,et al.  Breath analysis: the approach towards clinical applications. , 2007, Mini reviews in medicinal chemistry.

[36]  P De Natale,et al.  Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 microm. , 2006, Optics express.

[37]  R. Zare,et al.  Use of Broadband, Continuous-Wave Diode Lasers in Cavity Ring-Down Spectroscopy for Liquid Samples , 2003, Applied spectroscopy.

[38]  J. B. Paul,et al.  Broadband ringdown spectral photography. , 2001, Applied optics.

[39]  Martin Fechner,et al.  Cavity ring-down absorption spectrography based on filament-generated supercontinuum light. , 2009, Optics express.

[40]  J. J. Scherer Ringdown spectral photography , 1998 .

[41]  J. L. Collier,et al.  A low-cost gated integrator boxcar averager , 1996 .

[42]  Olaf Tietje,et al.  Prediction of breast cancer using volatile biomarkers in the breath , 2006, Breast Cancer Research and Treatment.

[43]  Barbara A. Paldus,et al.  An historical overview of cavity-enhanced methods , 2005 .

[44]  S. Mikhailenko,et al.  High sensitivity CW-cavity ring down spectroscopy of water in the region of the 1.5 μm atmospheric window , 2004 .

[45]  D. Z. Anderson,et al.  Mirror reflectometer based on optical cavity decay time. , 1984, Applied optics.

[46]  Roderic L Jones,et al.  Broad-band cavity ring-down spectroscopy. , 2003, Chemical reviews.

[47]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[48]  J R Taylor,et al.  Continuous-wave, high-power, Raman continuum generation in holey fibers. , 2003, Optics letters.

[49]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[50]  Dc Daan Schram,et al.  Fourier transform phase shift cavity ring down spectroscopy , 2002 .

[51]  James Fujimoto,et al.  Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. , 2003, Optics express.

[52]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[53]  Ruan Shuangchen,et al.  Supercontinuum Generation in a Photonic Crystal Fibre , 2004 .

[54]  Clemens F Kaminski,et al.  Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source , 2009, Applied spectroscopy.

[55]  M. Augustine,et al.  Cavity ring-down observation of Yb(3+) optical absorption in room temperature solution. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[56]  Kevin K Lehmann,et al.  Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source. , 2008, Optics express.

[57]  Noise in cavity ring-down spectroscopy caused by transverse mode coupling. , 2007, Optics express.

[58]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[59]  Ronald E. Hester,et al.  Volatile organic compounds in the atmosphere , 1995 .

[60]  S. Telser,et al.  Applications of breath gas analysis in medicine , 2004 .

[61]  T. Stacewicz,et al.  Towards Supercontinuum Cavity Ring-Down Spectroscopy , 2009 .

[62]  F. Arnold,et al.  Cosmic ray‐induced aerosol‐formation: First observational evidence from aircraft‐based ion mass spectrometer measurements in the upper troposphere , 2002 .

[63]  A. Ceccarini,et al.  Breath analysis: trends in techniques and clinical applications , 2005 .

[64]  P. Rohwetter,et al.  Laser multiple filamentation control in air using a smooth phase mask , 2008 .

[65]  K. Sakoda Optics of Photonic Crystals , 1999 .

[66]  Arden L. Buck,et al.  New Equations for Computing Vapor Pressure and Enhancement Factor , 1981 .

[67]  X. Zhang,et al.  Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.