Charge Central Interpretation of the Full Nonlinear PB Equation: Implications for Accurate and Scalable Modeling of Solvation Interactions.

Continuum solvation modeling based upon the Poisson-Boltzmann equation (PBE) is widely used in structural and functional analysis of biomolecules. In this work, we propose a charge-central interpretation of the full nonlinear PBE electrostatic interactions. The validity of the charge-central view or simply charge view, as formulated as a vacuum Poisson equation with effective charges, was first demonstrated by reproducing both electrostatic potentials and energies from the original solvated full nonlinear PBE. There are at least two benefits when the charge-central framework is applied. First the convergence analyses show that the use of polarization charges allows a much faster converging numerical procedure for electrostatic energy and forces calculation for the full nonlinear PBE. Second, the formulation of the solvated electrostatic interactions as effective charges in vacuum allows scalable algorithms to be deployed for large biomolecular systems. Here, we exploited the charge-view interpretation and developed a particle-particle particle-mesh (P3M) strategy for the full nonlinear PBE systems. We also studied the accuracy and convergence of solvation forces with the charge-view and the P3M methods. It is interesting to note that the convergence of both the charge-view and the P3M methods is more rapid than the original full nonlinear PBE method. Given the developments and validations documented here, we are working to adapt the P3M treatment of the full nonlinear PBE model to molecular dynamics simulations.

[1]  Ray Luo,et al.  On removal of charge singularity in Poisson-Boltzmann equation. , 2009, The Journal of chemical physics.

[2]  Jaydeep P Bardhan,et al.  Numerical solution of boundary-integral equations for molecular electrostatics. , 2009, The Journal of chemical physics.

[3]  J. A. McCammon,et al.  Calculating electrostatic forces from grid‐calculated potentials , 1990 .

[4]  Donald G. Truhlar,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics , 1999 .

[5]  Richard A. Friesner,et al.  An automatic three‐dimensional finite element mesh generation system for the Poisson–Boltzmann equation , 1997 .

[6]  Ray Luo,et al.  Recent progress in adapting Poisson–Boltzmann methods to molecular simulations , 2014 .

[7]  Anna Tempczyk,et al.  Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations , 1991 .

[8]  Richard A. Friesner,et al.  Solvation Free Energies of Peptides: Comparison of Approximate Continuum Solvation Models with Accurate Solution of the Poisson−Boltzmann Equation , 1997 .

[9]  R. Zauhar,et al.  The incorporation of hydration forces determined by continuum electrostatics into molecular mechanics simulations , 1991 .

[10]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[11]  Harold A. Scheraga,et al.  A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent , 1997, J. Comput. Chem..

[12]  Ray Luo,et al.  Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics: Accuracy and Precision with Finite-Difference Algorithms. , 2009, Chemical physics letters.

[13]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[14]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[15]  Ray Luo,et al.  Biological applications of classical electrostatics methods , 2014 .

[16]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[17]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent‐accessible surfaces in biomolecular systems , 2000 .

[18]  R Abagyan,et al.  Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide. , 2001, Biopolymers.

[19]  H. Zhou,et al.  Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. , 1993, Biophysical journal.

[20]  B. J. Yoon,et al.  Computation of the electrostatic interaction energy between a protein and a charged surface , 1992 .

[21]  James Andrew McCammon,et al.  Molecular dynamics simulation with a continuum electrostatic model of the solvent , 1995, J. Comput. Chem..

[22]  D. Case,et al.  Generalized Born Models of Macromolecular Solvation Effects , 2001 .

[23]  Raphael Hallez,et al.  THE FAST MULTIPOLE BOUNDARY ELEMENT METHOD , 2008 .

[24]  Richard A. Friesner,et al.  Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes , 1997, J. Comput. Chem..

[25]  Chandrajit L. Bajaj,et al.  An Efficient Higher-Order Fast Multipole Boundary Element Solution for Poisson-Boltzmann-Based Molecular Electrostatics , 2011, SIAM J. Sci. Comput..

[26]  Michael J. Holst,et al.  Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods , 1995, J. Comput. Chem..

[27]  Kim A. Sharp,et al.  Electrostatic interactions in macromolecules , 1994 .

[28]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[29]  Ray Luo,et al.  Assessment of linear finite‐difference Poisson–Boltzmann solvers , 2010, J. Comput. Chem..

[30]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[31]  J. Milovich,et al.  Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method. , 2002, Journal of colloid and interface science.

[32]  B. J. Yoon,et al.  A boundary element method for molecular electrostatics with electrolyte effects , 1990 .

[33]  Benzhuo Lu,et al.  An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann Electrostatics , 2009, Journal of chemical theory and computation.

[34]  C. Brooks,et al.  Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field. , 2006, Journal of the American Chemical Society.

[35]  Ray Luo,et al.  Exploring a charge-central strategy in the solution of Poisson's equation for biomolecular applications. , 2013, Physical chemistry chemical physics : PCCP.

[36]  Bo Li,et al.  Dielectric Boundary Force in Molecular Solvation with the Poisson-Boltzmann Free Energy: A Shape Derivative Approach , 2011, SIAM J. Appl. Math..

[37]  Ray Luo,et al.  Is Poisson-Boltzmann theory insufficient for protein folding simulations? , 2006, The Journal of chemical physics.

[38]  Xueyu Song,et al.  A molecular Debye-Hückel theory and its applications to electrolyte solutions. , 2011, The Journal of chemical physics.

[39]  Marcia O. Fenley,et al.  Fast Boundary Element Method for the Linear Poisson-Boltzmann Equation , 2002 .

[40]  Nathan A. Baker,et al.  Differential geometry based solvation model I: Eulerian formulation , 2010, J. Comput. Phys..

[41]  Michael Feig,et al.  Extending the horizon: towards the efficient modeling of large biomolecular complexes in atomic detail , 2006 .

[42]  Michael J. Holst,et al.  The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..

[43]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[44]  Alexander A. Rashin,et al.  Hydration phenomena, classical electrostatics, and the boundary element method , 1990 .

[45]  Minoru Sakurai,et al.  Medium effects on the molecular electronic structure. I. The formulation of a theory for the estimation of a molecular electronic structure surrounded by an anisotropic medium , 1987 .

[46]  J. Andrew McCammon,et al.  Solving the finite‐difference non‐linear Poisson–Boltzmann equation , 1992 .

[47]  R. Zauhar,et al.  A new method for computing the macromolecular electric potential. , 1985, Journal of molecular biology.

[48]  Ray Luo,et al.  Chapter Six - Poisson–Boltzmann Implicit Solvation Models , 2012 .

[49]  Ray Luo,et al.  Numerical Poisson-Boltzmann Model for Continuum Membrane Systems. , 2013, Chemical physics letters.

[50]  Ray Luo,et al.  Dielectric Boundary Forces in Numerical Poisson-Boltzmann Methods: Theory and Numerical Strategies. , 2011, Chemical physics letters.

[51]  R. Luo,et al.  Reducing grid-dependence in finite-difference Poisson-Boltzmann calculations. , 2012, Journal of chemical theory and computation.

[52]  J. A. McCammon,et al.  R EVIEW A RTICLE Recent Progress inNumericalMethods for the Poisson-Boltzmann Equation in Biophysical Applications , 2008 .

[53]  J Andrew McCammon,et al.  Electrostatic Free Energy and Its Variations in Implicit Solvent Models , 2022 .

[54]  P. Koehl Electrostatics calculations: latest methodological advances. , 2006, Current opinion in structural biology.

[55]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[56]  C. Brooks,et al.  Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. , 2005, Advances in protein chemistry.

[57]  Robert E. Bruccoleri,et al.  Grid positioning independence and the reduction of self‐energy in the solution of the Poisson—Boltzmann equation , 1993, J. Comput. Chem..

[58]  Benoît Roux,et al.  Solvation of complex molecules in a polar liquid: An integral equation theory , 1996 .

[59]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[60]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[61]  Michael J. Holst,et al.  Multigrid solution of the Poisson—Boltzmann equation , 1992, J. Comput. Chem..

[62]  Michael J. Holst,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2001 .

[63]  A. Rashin Electrostatics of ion-ion interactions in solution , 1989 .

[64]  Nathan A. Baker,et al.  Improving implicit solvent simulations: a Poisson-centric view. , 2005, Current opinion in structural biology.

[65]  Y. C. Zhou,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. , 2011, Biophysical journal.

[66]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[67]  Dexuan Xie,et al.  A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation , 2007 .

[68]  J. Andrew McCammon,et al.  Electrostatic energy calculations by a Finite‐difference method: Rapid calculation of charge–solvent interaction energies , 1992 .

[69]  Harold A. Scheraga,et al.  A combined iterative and boundary-element approach for solution of the nonlinear Poisson-Boltzmann equation , 1992 .

[70]  Michael J. Holst,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..

[71]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[72]  Ray Luo,et al.  A Poisson–Boltzmann dynamics method with nonperiodic boundary condition , 2003 .

[73]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[74]  Enrico O. Purisima,et al.  A simple yet accurate boundary element method for continuum dielectric calculations , 1995, J. Comput. Chem..

[75]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[76]  Jacob K. White,et al.  Accurate solution of multi‐region continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann equation with curved boundary elements , 2009, J. Comput. Chem..

[77]  Eric C. Cyr,et al.  A first‐order system least‐squares finite element method for the Poisson‐Boltzmann equation , 2009, J. Comput. Chem..

[78]  Michael J. E. Sternberg,et al.  Regular representation of irregular charge distributions , 1984 .

[79]  Ray Luo,et al.  Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers. , 2010, Journal of chemical theory and computation.

[80]  Donald Bashford,et al.  An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules , 1997, ISCOPE.

[81]  R. Zauhar,et al.  The rigorous computation of the molecular electric potential , 1988 .

[82]  S Subramaniam,et al.  Computation of molecular electrostatics with boundary element methods. , 1997, Biophysical journal.

[83]  Kim A. Sharp,et al.  Incorporating solvent and ion screening into molecular dynamics using the finite‐difference Poisson–Boltzmann method , 1991 .

[84]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[85]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[86]  Douglas A. Lauffenburger,et al.  NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION FOR A MEMBRANE-ELECTROLYTE SYSTEM , 1994 .

[87]  J. Andrew McCammon,et al.  Dielectric boundary smoothing in finite difference solutions of the poisson equation: An approach to improve accuracy and convergence , 1991 .

[88]  Ray Luo,et al.  Electrostatic forces in the Poisson-Boltzmann systems. , 2013, The Journal of chemical physics.

[89]  Ray Luo,et al.  Dielectric pressure in continuum electrostatic solvation of biomolecules. , 2012, Physical chemistry chemical physics : PCCP.

[90]  M K Gilson,et al.  Theory of electrostatic interactions in macromolecules. , 1995, Current opinion in structural biology.

[91]  Benzhuo Lu,et al.  Order N algorithm for computation of electrostatic interactions in biomolecular systems , 2006, Proceedings of the National Academy of Sciences.

[92]  Ruhong Zhou,et al.  Poisson−Boltzmann Analytical Gradients for Molecular Modeling Calculations , 1999 .

[93]  Klaus Schulten,et al.  Molecular Dynamics Simulations in Heterogeneous Dielectrica and Debye-Hückel Media - Application to the Protein Bovine Pancreatic Trypsin Inhibitor , 1992 .

[94]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[95]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .