Basic Properties of Metrizable Topological Spaces

Basic Properties of Metrizable Topological Spaces We continue Mizar formalization of general topology according to the book [11] by Engelking. In the article, we present the final theorem of Section 4.1. Namely, the paper includes the formalization of theorems on the correspondence between the cardinalities of the basis and of some open subcover, and a discreet (closed) subspaces, and the weight of that metrizable topological space. We also define Lindelöf spaces and state the above theorem in this special case. We also introduce the concept of separation among two subsets (see [12]).

[1]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[2]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[3]  Sam Alfred Pearsall The Cantor set , 1999 .

[4]  Andrzej Trybulec,et al.  A Borsuk Theorem on Homotopy Types , 1991 .

[5]  Krzysztof Hryniewiecki,et al.  Basic Properties of Real Numbers , 2004 .

[6]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[7]  Carl F. DiSalvo,et al.  Connected space , 2009, CHI Extended Abstracts.

[8]  Andrzej Trybulec,et al.  Tuples, Projections and Cartesian Products , 1990 .

[9]  Leszek Borys,et al.  Paracompact and Metrizable Spaces , 1991 .

[10]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[11]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[12]  Czesław Bylí,et al.  Binary Operations , 2019, Problem Solving in Mathematics and Beyond.

[13]  Wojciech A. Trybulec Subgroup and Cosets of Subgroups , 1990 .

[14]  On the Boundary and Derivative of a Set 1 , 2005 .

[15]  Adam Grabowski Properties of the Product of Compact Topological Spaces , 1999 .

[16]  Families of Subsets , Subspaces and Mappings in Topological Spaces , 1989 .

[17]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[18]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[19]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[20]  Karol Pak,et al.  Small Inductive Dimension of Topological Spaces , 2009, Formaliz. Math..

[21]  Yatsuka Nakamura,et al.  Dyadic numbers and T4 topological spaces , 1995 .

[22]  Agata Darmochwa Euclidean Space , 2018, How to Pass the FRACP Written Examination.

[23]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[24]  Agata Darmochwa,et al.  Topological Spaces and Continuous Functions , 1990 .

[25]  Z. Karno Maximal Discrete Subspaces of Almost Discrete Topological Spaces , 1993 .

[26]  G. Bancerek Konig's Theorem , 1990 .

[27]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[28]  Adam Grabowski On the Borel Families of Subsets of Topological Spaces 1 , 2005 .

[29]  G. Bancerek Countable Sets and Hessenberg's Theorem , 1991 .

[30]  Yatsuka Nakamura,et al.  The Theorem of Weierstrass Józef , 2004 .

[31]  Czesław Bylí Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[32]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[33]  Beata Padlewska Connected Spaces , 1989 .

[34]  Wojciech A. Trybulec Lattice of Subgroups of a Group , 2007 .

[35]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[36]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[37]  Beata Padlewska,et al.  Families of Sets , 1990 .