Ultrawideband RF-IQ Modulator Using Segmented Nonlinearly Scaled RF-DACs and Nonoverlapping LO Signals

A wideband Cartesian in-phase and quadrature (I/Q) modulator based on dual 10 b RF-digital-to-analog converters (DACs) is presented. Nonoverlapping local oscillator (LO) signals and a segmented nonlinear scaling with scaled unit cells contribute to a high linearity and allow for a low-complexity digital predistortion (DPD). Unit-cell flip-flops (FFs) and a balanced clock distribution enable a high sample rate with little skew. Out-of-band emissions are reduced through drive-slope control of the data-switch inputs. The modulator, implemented in the 22-nm fully-depleted silicon-on-insulator (FDSOI) CMOS, operates between 20 and 26 GHz with a peak sample rate of 11 GS/s. It has been used to demonstrate the transmission of a 64-quadrature amplitude modulation (QAM) single-carrier (SC) signal at 13.2 Gb/s, a 256-QAM SC signal at 7.33 Gb/s, and an orthogonal frequency division multiplexing (OFDM) signal comprising four aggregated 400-MHz 64-QAM channels with an error vector magnitude (EVM) of 6.43%. These results demonstrate the potential of the proposed modulator for the realization of ultrawideband transmitters in high-performance millimeter-wave (mmW) systems.

[1]  C. Fager,et al.  RF PA Predistortion using Non-Linear RF-DACs , 2022, 2022 IEEE Nordic Circuits and Systems Conference (NorCAS).

[2]  R. Hou,et al.  An 11 GS/s 2×10b 20–26 GHz Modulator using Segmented Non-Linear RF-DACs and Non-Overlapping LO signals , 2022, Radio Frequency Integrated Circuits Symposium.

[3]  J. Walling,et al.  A mm-Wave Switched-Capacitor RFDAC , 2022, IEEE Journal of Solid-State Circuits.

[4]  C. Fager,et al.  A 2 × 6b 8 GS/s 17–24-GHz I/Q RF-DAC-Based Transmitter in 22-nm FDSOI CMOS , 2021, IEEE Microwave and Wireless Components Letters.

[5]  P. Wambacq,et al.  A 10.56 Gbit/s, -27.8 dB EVM Polar Transmitter at 60 GHz in 28nm CMOS , 2020, 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[6]  Slim Boumaiza,et al.  Novel Parallel-Processing-Based Hardware Implementation of Baseband Digital Predistorters for Linearizing Wideband 5G Transmitters , 2020, IEEE Transactions on Microwave Theory and Techniques.

[7]  Xun Luo,et al.  A 20–32-GHz Quadrature Digital Transmitter Using Synthesized Impedance Variation Compensation , 2020, IEEE Journal of Solid-State Circuits.

[8]  Chao Ma,et al.  A Highly Efficient Conditional Feedthrough Pulsed Flip-Flop for High-Speed Applications , 2020, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Shuhei Yamada,et al.  A 42.2-Gb/s 4.3-pJ/b 60-GHz Digital Transmitter With 12-b/Symbol Polarization MIMO , 2019, IEEE Journal of Solid-State Circuits.

[10]  Pere L. Gilabert,et al.  Digital Predistorters Go Multidimensional: DPD for Concurrent Multiband Envelope Tracking and Outphasing Power Amplifiers , 2019, IEEE Microwave Magazine.

[11]  Sorin P. Voinigescu,et al.  Ultra-Broadband I/Q RF-DAC Transmitters , 2017, IEEE Transactions on Microwave Theory and Techniques.

[12]  Morteza S. Alavi,et al.  An Intrinsically Linear Wideband Polar Digital Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[13]  Gabriel M. Rebeiz,et al.  ${W}$ -Band Direct-Modulation >20-Gb/s Transmit and Receive Building Blocks in 32-nm SOI CMOS , 2017, IEEE Journal of Solid-State Circuits.

[14]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[15]  Mikko Kaltiokallio,et al.  A 1 to 5GHz adjustable active polyphase filter for LO quadrature generation , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  Kari Halonen,et al.  Analysis and Design of Passive Polyphase Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[18]  Arthur H. M. van Roermund,et al.  A general analysis on the timing jitter in D/A converters , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).