On the limitations of Barankin type bounds for MLE threshold prediction

Various approximations of the Barankin bound (BB), called Barankin type bounds (BTBs), are usually used to predict the threshold region of the maximum likelihood estimator (MLE). In this paper, we show that BTBs are not always appropriate for predicting this threshold region. We prove that in some common estimation problems the BB is infinite, and thus, its approximations cannot reliably predict the MLE threshold region. This result is illustrated for two general signal processing models, in which BTBs can become arbitrarily large, and consequently, cannot reliably predict the MLE threshold region. HighlightsWe prove that in some common estimation problems the Barankin bound is infinite.Thus, in these cases, its approximations cannot predict the MLE threshold region.This result is illustrated for two general signal processing models.

[1]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[2]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[3]  Tao Li,et al.  A Barankin-Type Bound on Direction Estimation Using Acoustic Sensor Arrays , 2011, IEEE Transactions on Signal Processing.

[4]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[5]  Gerald J. Glasser,et al.  Minimum Variance Unbiased Estimators for Poisson Probabilities , 1962 .

[6]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[7]  Philippe Forster,et al.  A Useful Form of the Abel Bound and Its Application to Estimator Threshold Prediction , 2007, IEEE Transactions on Signal Processing.

[8]  Jean-Yves Tourneret,et al.  Barankin lower bound for change-points in independent sequences , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[9]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[10]  Stefan P. Mueller,et al.  Estimation performance at low SNR: predictions of the Barankin bound , 1995, Medical Imaging.

[11]  Christ D. Richmond,et al.  Mean-squared error and threshold SNR prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances , 2006, IEEE Transactions on Information Theory.

[12]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[13]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[14]  Pascal Larzabal,et al.  SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.

[15]  L. Seidman Performance limitations and error calculations for parameter estimation , 1970 .

[16]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[17]  Craig K. Abbey,et al.  Barankin bound: instability in certain estimation problems , 1996, Medical Imaging.

[18]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[19]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[20]  Carlos H. Muravchik,et al.  Barankin-Type Lower Bound on Multiple Change-Point Estimation , 2010, IEEE Transactions on Signal Processing.

[21]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[22]  Fredrik Athley,et al.  Threshold region performance of maximum likelihood direction of arrival estimators , 2005, IEEE Transactions on Signal Processing.

[23]  Luc Knockaert,et al.  The Barankin bound and threshold behavior in frequency estimation , 1997, IEEE Trans. Signal Process..

[24]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[25]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[26]  Ariela Zeira,et al.  Realizable lower bounds for time delay estimation. 2. Threshold phenomena , 1994, IEEE Trans. Signal Process..