Microstructural characterization, mechanical properties and thermal expansion of antiperovskite manganese nitride Mn3.1Zn0.5Sn0.4N fabricated by combing vacuum sintering and spark-plasma sintering

[1]  Moon J. Kim,et al.  Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix , 2019, Materials Characterization.

[2]  K. Das,et al.  Study on thermal and mechanical properties of yttrium tungstate-aluminium nitride reinforced aluminium matrix hybrid composites , 2019, Journal of Alloys and Compounds.

[3]  Wenli Song,et al.  Large and constant coefficient of negative thermal expansion covering a wide temperature range in Zn1−Mn NMn3 (0 ≤x≤ 0.3) , 2018, Scripta Materialia.

[4]  J. Yi,et al.  Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes , 2018 .

[5]  A. Weibel,et al.  Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy , 2018 .

[6]  M. Gupta,et al.  Phonons and Anomalous Thermal Expansion Behaviour in Crystalline Solids , 2017, 1711.07267.

[7]  Qiang Zhang,et al.  In-situ Raman spectroscopy study of thermal mismatch stress and negative thermal expansion behaviours of ZrW2O8 in ZrW2O8/Al composite , 2017 .

[8]  Cheng Yang,et al.  The GaNMn3-Epoxy composites with tunable coefficient of thermal expansion and good dielectric performance , 2017 .

[9]  M. Scheffler,et al.  Polymer derived ceramics with β-eucryptite fillers: A novel processing route to negative and near zero expansion materials , 2017 .

[10]  Jie Ren,et al.  Zero thermal expansion, electrical conductivity and hardness of Mn3Zn0.5Sn0.5N/Cu composites , 2016 .

[11]  Rongjin Huang,et al.  La(Fe, Si, Co)13/Cu conductive composites with tailoring thermal expansion , 2016 .

[12]  Sanjeev Kumar,et al.  Metal Matrix Composites for Thermal Management: A Review , 2016 .

[13]  J. Deng,et al.  Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. , 2015, Chemical Society reviews.

[14]  Weiqi Wang,et al.  Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites , 2015, Nano Research.

[15]  K. Takenaka,et al.  Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler , 2014 .

[16]  Xitao Wang,et al.  Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering , 2014 .

[17]  Xiaoyan Song,et al.  Effect of Microstructure Scale on Negative Thermal Expansion of Antiperovskite Manganese Nitride , 2014 .

[18]  Lihua Chu,et al.  Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature , 2014 .

[19]  Rongjin Huang,et al.  Broadened negative thermal expansion operation-temperature window in antiperovskite Mn3Zn0.6Ge0.4N prepared by spark plasma sintering , 2014 .

[20]  T. Inagaki,et al.  Magnetovolume effects in manganese nitrides with antiperovskite structure , 2014, Science and technology of advanced materials.

[21]  Tong Peng,et al.  Mn-based antiperovskite functional materials: Review of research , 2013 .

[22]  Yi Wu,et al.  The effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites , 2013, Journal of Materials Science.

[23]  K. Takenaka,et al.  Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion , 2012 .

[24]  C. Lind,et al.  Two Decades of Negative Thermal Expansion Research: Where Do We Stand? , 2012, Materials.

[25]  Yuping Sun,et al.  The study of negative thermal expansion and magnetic evolution in antiperovskite compounds Cu0.8-xSnxMn0.2NMn3(0 ≤ x ≤ 0.3) , 2012 .

[26]  K. Takenaka Negative thermal expansion materials: technological key for control of thermal expansion , 2012, Science and technology of advanced materials.

[27]  Zhonghua Sun,et al.  Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride , 2011, Advanced materials.

[28]  K. Takenaka,et al.  Giant negative thermal expansion in antiperovskite manganese nitrides , 2011 .

[29]  C. Lind,et al.  Zirconium tungstate/polymer nanocomposites: Challenges and opportunities , 2011 .

[30]  Rongjin Huang,et al.  Low thermal expansion behavior and transport properties of Ni and Ge co-doped manganese nitride materials at cryogenic temperatures , 2010 .

[31]  H. Takagi,et al.  Mechanical Properties of Metallic Perovskite Mn3Cu0.5Ge0.5N:High‐Stiffness Isotropic Negative Thermal Expansion Material , 2009 .

[32]  C. Smith,et al.  Negative thermal expansion: a review , 2009 .

[33]  Rongjin Huang,et al.  Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si , 2008 .

[34]  H. Takagi,et al.  Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect , 2008 .

[35]  Ying Sun,et al.  Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN , 2007 .

[36]  W. Fei,et al.  Microstructure and interfacial reactions of β-eucryptite particles in aluminum matrix composites , 2006 .

[37]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[38]  K. Ozaki,et al.  Fabrication and Thermal Expansion of Al-ZrW2O8 Composites by Pulse Current Sintering Process , 2003 .

[39]  S. Hong,et al.  Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications , 2000 .

[40]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[41]  Jun Xu,et al.  Microstructure and thermophysical properties of SiC/Al composites mixed with diamond , 2015 .