A hybrid PSO-GD based intelligent method for machine diagnosis

This paper presents an intelligent methodology for diagnosing incipient faults in rotating machinery. In this fault diagnosis system, wavelet neural network techniques are used in combination with a new evolutionary learning algorithm. This new evolutionary learning algorithm is based on a hybrid of the constriction factor approach for particle swarm optimization (PSO) technique and the gradient descent (GD) technique, and is thus called HGDPSO. The HGDPSO is developed in such a way that a constriction factor approach for particle swarm optimization (CFA for PSO) is applied as a based level search, which can give a good direction to the optimal global region, and a local search gradient descent (GD) algorithm is used as a fine tuning to determine the optimal solution at the final. The effectiveness of the HGDPSO based WNN is demonstrated through the classification of the fault signals in rotating machinery. The simulated results show its feasibility and validity.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Bernard Delyon,et al.  Accuracy analysis for wavelet approximations , 1995, IEEE Trans. Neural Networks.

[3]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[4]  Yagyensh C. Pati,et al.  Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations , 1993, IEEE Trans. Neural Networks.

[5]  R.J. Marks,et al.  Inversion of neural network underwater acoustic model for estimation of bottom parameters using modified particle swarm optimizers , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[6]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[7]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[8]  Yutian Liu,et al.  An adaptive PSO algorithm for reactive power optimization , 2003 .

[9]  H. Yoshida,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 1999, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[10]  Godfrey C. Onwubolu TRIBES application to the flow shop scheduling problem , 2004 .

[11]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Ramesh C. Jain,et al.  A robust backpropagation learning algorithm for function approximation , 1994, IEEE Trans. Neural Networks.

[14]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Jun Zhang,et al.  Wavelet neural networks for function learning , 1995, IEEE Trans. Signal Process..

[16]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[17]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[19]  Russell C. Eberhart,et al.  Human tremor analysis using particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  D. Agrafiotis,et al.  Feature selection for structure-activity correlation using binary particle swarms. , 2002, Journal of medicinal chemistry.

[21]  Zeng Jian A Guaranteed Global Convergence Particle Swarm Optimizer , 2004 .

[22]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[23]  Andries Petrus Engelbrecht,et al.  Cooperative learning in neural networks using particle swarm optimizers , 2000, South Afr. Comput. J..

[24]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[25]  José A. Romagnoli,et al.  Process data de-noising using wavelet transform , 1999, Intell. Data Anal..

[26]  Ş. Niculescu Artificial neural networks and genetic algorithms in QSAR , 2003 .

[27]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[28]  S. Kaniel Estimates for Some Computational Techniques - in Linear Algebra , 1966 .

[29]  C. Chui,et al.  Wavelets : theory, algorithms, and applications , 1994 .

[30]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[31]  Zhao Hui,et al.  Optimal Design of Power System Stabilizer Using Particle Swarm Optimization , 2006 .

[32]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[33]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[34]  Vikram M. Gadre,et al.  Function learning using wavelet neural networks , 2000, Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482).

[35]  Godfrey C. Onwubolu,et al.  New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.

[36]  Roberto Kawakami Harrop Galvão,et al.  A neural classifier employing biased wavelets , 1998, Proceedings 5th Brazilian Symposium on Neural Networks (Cat. No.98EX209).

[37]  Andries Petrus Engelbrecht,et al.  Using neighbourhoods with the guaranteed convergence PSO , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[38]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[39]  Yuhui Shi,et al.  Extracting rules from fuzzy neural network by particle swarm optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[40]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[41]  Huihe Shao,et al.  Particle Swarm Optimisation in Feedforward Neural Network , 2000, ANNIMAB.

[42]  F. van den Bergh,et al.  Training product unit networks using cooperative particle swarm optimisers , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[43]  Qinghua Zhang,et al.  Using wavelet network in nonparametric estimation , 1997, IEEE Trans. Neural Networks.

[44]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[45]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[46]  Michael N. Vrahatis,et al.  Modification of the Particle Swarm Optimizer for Locating All the Global Minima , 2001 .

[47]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[48]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).