Retina is structured to process an excess of darkness in natural scenes

Retinal ganglion cells that respond selectively to a dark spot on a brighter background (OFF cells) have smaller dendritic fields than their ON counterparts and are more numerous. OFF cells also branch more densely, and thus collect more synapses per visual angle. That the retina devotes more resources to processing dark contrasts predicts that natural images contain more dark information. We confirm this across a range of spatial scales and trace the origin of this phenomenon to the statistical structure of natural scenes. We show that the optimal mosaics for encoding natural images are also asymmetric, with OFF elements smaller and more numerous, matching retinal structure. Finally, the concentration of synapses within a dendritic field matches the information content, suggesting a simple principle to connect a concrete fact of neuroanatomy with the abstract concept of information: equal synapses for equal bits.

[1]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[2]  B. Boycott,et al.  Morphology and topography of on- and off-alpha cells in the cat retina , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  W A Richards,et al.  Lightness scale from image intensity distributions. , 1981, Applied optics.

[4]  S. Laughlin,et al.  Matching Coding to Scenes to Enhance Efficiency , 1983 .

[5]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[6]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[7]  V Zemon,et al.  Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials , 1988, Visual Neuroscience.

[8]  Y. Fukuda,et al.  Fractal analysis of ganglion cell dendritic branching patterns of the rat and cat retinae. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[9]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Dacey,et al.  A coupled network for parasol but not midget ganglion cells in the primate retina , 1992, Visual Neuroscience.

[13]  C. Enroth-Cugell,et al.  Effect of ambient illumination on the spatial properties of the center and surround of Y-cell receptive fields , 1993, Visual Neuroscience.

[14]  G Buchsbaum,et al.  How retinal microcircuits scale for ganglion cells of different size , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[16]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[17]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  K. Donner,et al.  Noise-equivalent and signal-equivalent visual summation of quantal events in space and time , 1998, Visual Neuroscience.

[19]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[20]  D. Tolhurst,et al.  Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes , 2000, Vision Research.

[21]  R. Wong,et al.  Cell-type specific dendritic contacts between retinal ganglion cells during development. , 2001, Journal of neurobiology.

[22]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[24]  Kareem M. Ahmad,et al.  Cell density ratios in a foveal patch in macaque retina , 2003, Visual Neuroscience.

[25]  Peter Sterling,et al.  Contrast threshold of a brisk-transient ganglion cell in vitro. , 2003, Journal of neurophysiology.

[26]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[27]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[28]  M. Landy,et al.  A visual mechanism tuned to black , 2004, Vision Research.

[29]  Robert G. Smith,et al.  Spike Generator Limits Efficiency of Information Transfer in a Retinal Ganglion Cell , 2004, The Journal of Neuroscience.

[30]  William B. Kristan,et al.  Quantifying Stimulus Discriminability: A Comparison of Information Theory and Ideal Observer Analysis , 2005, Neural Computation.

[31]  P. Sterling,et al.  How Much the Eye Tells the Brain , 2006, Current Biology.

[32]  Dwight A Burkhardt,et al.  Natural images and contrast encoding in bipolar cells in the retina of the land- and aquatic-phase tiger salamander , 2006, Visual Neuroscience.

[33]  Charles P. Ratliff Toward a theory of the functional organization of the retina , 2007 .

[34]  Chun-I Yeh,et al.  On and off domains of geniculate afferents in cat primary visual cortex , 2008, Nature Neuroscience.

[35]  Peter Sterling,et al.  Different types of ganglion cell share a synaptic pattern , 2008, The Journal of comparative neurology.

[36]  Tim Gollisch,et al.  Modeling convergent ON and OFF pathways in the early visual system , 2008, Biological Cybernetics.

[37]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[38]  T. Sharpee,et al.  Predictable irregularities in retinal receptive fields , 2009, Proceedings of the National Academy of Sciences.

[39]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[40]  Peter Sterling,et al.  Loss of Sensitivity in an Analog Neural Circuit , 2009, The Journal of Neuroscience.

[41]  P. Sterling,et al.  How the Optic Nerve Allocates Space, Energy Capacity, and Information , 2009, The Journal of Neuroscience.