An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing.

[1]  A. Wilde,et al.  SCN5A Mutations and the Role of Genetic Background in the Pathophysiology of Brugada Syndrome , 2009, Circulation: Cardiovascular Genetics.

[2]  A. Wilde,et al.  Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. , 2009, Heart rhythm.

[3]  C. Antzelevitch,et al.  A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated With Brugada ECG Phenotype , 2009, Circulation. Cardiovascular genetics.

[4]  D. Tester,et al.  Cardiomyopathic and channelopathic causes of sudden unexplained death in infants and children. , 2009, Annual review of medicine.

[5]  H. Tan,et al.  Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. , 2009, Heart rhythm.

[6]  A. Wilde,et al.  SCN5A overlap syndromes: no end to disease complexity? , 2008, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[7]  T. Zimmer,et al.  SCN5A channelopathies--an update on mutations and mechanisms. , 2008, Progress in biophysics and molecular biology.

[8]  Jørgen K. Kanters,et al.  Functional Effects of KCNE3 Mutation and Its Role in the Development of Brugada Syndrome , 2008, Circulation. Arrhythmia and electrophysiology.

[9]  H. Wichmann,et al.  Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. , 2008, The Journal of clinical investigation.

[10]  E. Behr,et al.  The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. , 2008, The Journal of clinical investigation.

[11]  P. C. Viswanathan,et al.  Mutation in Glycerol-3-Phosphate Dehydrogenase 1–Like Gene (GPD1-L) Decreases Cardiac Na+ Current and Causes Inherited Arrhythmias , 2007, Circulation.

[12]  S. Priori,et al.  Gating Properties of SCN5A Mutations and the Response to Mexiletine in Long-QT Syndrome Type 3 Patients , 2007, Circulation.

[13]  C. Antzelevitch Genetic basis of Brugada syndrome. , 2007, Heart rhythm.

[14]  A. Wilde,et al.  Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? , 2005, Cardiovascular research.

[15]  D. Tester,et al.  Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. , 2005, Heart rhythm.

[16]  J. Stephens,et al.  Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. , 2004, Heart rhythm.

[17]  G. Breithardt,et al.  Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: Different incidences in familial and sporadic disease , 2003, Human mutation.

[18]  Marc Gewillig,et al.  A Novel mutation L619F in the cardiac Na+ channel SCN5A associated with long‐QT syndrome (LQT3): a role for the I‐II linker in inactivation gating , 2003, Human mutation.

[19]  Peter K Rogan,et al.  Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations. , 2003, Pharmacogenetics.

[20]  P. C. Viswanathan,et al.  Allelic Variants in Long-QT Disease Genes in Patients With Drug-Associated Torsades de Pointes , 2002, Circulation.

[21]  S. Priori,et al.  Natural History of Brugada Syndrome: Insights for Risk Stratification and Management , 2002, Circulation.

[22]  S. Antonarakis,et al.  Nomenclature for the description of human sequence variations , 2001, Human Genetics.

[23]  S. Priori,et al.  Clinical and Genetic Heterogeneity of Right Bundle Branch Block and ST-Segment Elevation Syndrome: A Prospective Evaluation of 52 Families , 2000, Circulation.

[24]  P. Oefner,et al.  High-accuracy DNA sequence variation screening by DHPLC. , 2000, BioTechniques.

[25]  A. Wilde,et al.  A single Na(+) channel mutation causing both long-QT and Brugada syndromes. , 1999, Circulation research.

[26]  M. Patton,et al.  Splicing mutations in KCNQ1: a mutation hot spot at codon 344 that produces in frame transcripts. , 1999, Circulation.

[27]  D M Roden,et al.  Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. , 1999, Circulation.

[28]  P. Coumel,et al.  Genomic organization of the KCNQ1 K+ channel gene and identification of C-terminal mutations in the long-QT syndrome. , 1999, Circulation research.

[29]  M. Keating,et al.  Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. , 1998, Genomics.

[30]  G. Breithardt,et al.  Genetic basis and molecular mechanism for idiopathic ventricular fibrillation , 1998, Nature.

[31]  J. Balser,et al.  Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. , 1998, Circulation.

[32]  Z. Li,et al.  Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. , 1996, Genomics.

[33]  J. Brugada,et al.  Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. , 1992, Journal of the American College of Cardiology.

[34]  A. Weiner,et al.  A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation , 1986, Cell.

[35]  J. Graham,et al.  Genetic Testing for Long-QT Syndrome: Distinguishing Pathogenic Mutations From Benign Variants , 2010 .

[36]  Wataru Shimizu,et al.  Brugada syndrome: report of the second consensus conference. , 2005, Heart rhythm.

[37]  Charles Antzelevitch,et al.  The Brugada syndrome. , 2002, Current opinion in cardiology.