Automatic Classification of Objects in 3D Laser Range Scans

This paper presents a new method for object detection and classification in 3D laser range data that is acquired by an autonomous mobile robot. Off-screen rendered depth and reflectance images serve as an input for an Ada Boost learning procedure that constructs a cascade of classifiers. The performance of the classification is improved by combining both sensor modalities, which are independent from external light. The resulting approach for object classification is real-time capable and reliable. It combines recent results in computer vision with the emerging technology of 3D laser scanners.

[1]  Akihisa Ohya,et al.  Autonomous Indoor Mobile Robot Navigation by detecting Fluorescent Tubes , 2002 .

[2]  Linda G. Shapiro,et al.  A new paradigm for recognizing 3-D objects from range data , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Erik Wolfart,et al.  Automated 3D reconstruction of interiors with multiple scan views , 1998, Electronic Imaging.

[5]  HebertMartial,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999 .

[6]  David G. Lowe,et al.  Local and global localization for mobile robots using visual landmarks , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[9]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[10]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[11]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.

[12]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[13]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[14]  Joachim Hertzberg,et al.  Planning Robot Motion for 3D Digitalization of Indoor Environments , 2002 .

[15]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[19]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[20]  Joachim Hertzberg,et al.  A 3D laser range finder for autonomous mobile robots , 2001 .

[21]  Ioannis Stamos,et al.  AVENUE: Automated site modeling in urban environments , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.