Preparation of a Pure Molecular Quantum Gas

An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.

[1]  C. Regal,et al.  Creation of ultracold molecules from a Fermi gas of atoms , 2003, Nature.

[2]  S. Chu,et al.  Sensitive detection of cold cesium molecules formed on Feshbach resonances. , 2002, Physical review letters.

[3]  T. Weber,et al.  Bose-Einstein Condensation of Cesium , 2002, Science.

[4]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[5]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[6]  D. Comparat,et al.  Accumulation of cold cesium molecules via photoassociation in a mixed atomic and molecular trap. , 2002, Physical review letters.

[7]  C. Wieman,et al.  Atom–molecule coherence in a Bose–Einstein condensate , 2002, Nature.

[8]  J. Cirac,et al.  Creation of a molecular condensate by dynamically melting a Mott insulator. , 2002, Physical review letters.

[9]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[10]  M. Lewenstein,et al.  Quantum phases of dipolar bosons in optical lattices. , 2001, Physical review letters.

[11]  Chu,et al.  High resolution feshbach spectroscopy of cesium , 2000, Physical review letters.

[12]  Williams,et al.  Collision properties of ultracold 133Cs atoms , 2000, Physical review letters.

[13]  G. Berden,et al.  Electrostatic trapping of ammonia molecules , 2000, Nature.

[14]  Usa,et al.  Atom Loss and the Formation of a Molecular Bose-Einstein Condensate by Feshbach Resonance , 2000, cond-mat/0006017.

[15]  R. H. Wynar,et al.  Superchemistry: dynamics of coupled atomic and molecular bose-einstein condensates , 2000, Physical review letters.

[16]  R. H. Wynar,et al.  Molecules in a bose-einstein condensate , 2000, Science.

[17]  B. Verhaar,et al.  Time-dependent Feshbach resonance scattering and anomalous decay of a Na Bose-Einstein condensate , 1999 .

[18]  S. Chu,et al.  Suppression of Atomic Radiative Collisions by Tuning the Ground State Scattering Length , 1999 .

[19]  R. Decarvalho,et al.  Magnetic trapping of calcium monohydride molecules at millikelvin temperatures , 1998, Nature.

[20]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[21]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.