Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions

We propose a numerical method to compute the survival (first-passage) probability density function in jump-diffusion models. This function is obtained by numerical approximation of the associated Fokker–Planck partial integro-differential equation, with suitable boundary conditions and delta initial condition. In order to obtain an accurate numerical solution, the singularity of the Dirac delta function is removed using a change of variables based on the fundamental solution of the pure diffusion model. This approach allows to transform the original problem to a regular problem, which is solved using a radial basis functions (RBFs) meshless collocation method. In particular the RBFs approximation is carried out in conjunction with a suitable change of variables, which allows to use radial basis functions with equally spaced centers and at the same time to obtain a sharp resolution of the gradients of the survival probability density function near the barrier. Numerical experiments are presented in which several different kinds of radial basis functions are employed. The results obtained reveal that the numerical method proposed is extremely accurate and fast, and performs significantly better than a conventional finite difference approach.

[1]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[2]  Caroline Japhet,et al.  First passage time problem for a drifted Ornstein-Uhlenbeck process. , 2004, Mathematical biosciences.

[3]  E FasshauerG,et al.  Using meshfree approximation for multi-asset American option problems , 2004 .

[4]  S. H. Crandall First-crossing probabilities of the linear oscillator , 1970 .

[5]  Transitional Densities of Diffusion Processes , 2007 .

[6]  Michael D. Marcozzi,et al.  A Numerical Approach to American Currency Option Valuation , 2001 .

[7]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[8]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[9]  A. Cheng,et al.  A comparison of efficiency and error convergence of multiquadric collocation method and finite element method , 2003 .

[10]  Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation , 2007 .

[11]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[12]  A. Pacut,et al.  Delayed-exponential approximation of a linear homogeneous diffusion model of neuron , 2004, Biological Cybernetics.

[13]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[14]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[15]  Chunsheng Zhou,et al.  The term structure of credit spreads with jump risk , 2001 .

[16]  William H. Press,et al.  Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.

[17]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[18]  Chunbiao Gan,et al.  First-passage failure of quasi-non-integrable-Hamiltonian systems , 2001 .

[19]  Elisabeth Larsson,et al.  Improved radial basis function methods for multi-dimensional option pricing , 2008 .

[20]  M. Golberg,et al.  Improved multiquadric approximation for partial differential equations , 1996 .

[21]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[22]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[23]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[24]  First passage failure of quasi-partial integrable generalized Hamiltonian systems , 2010 .

[25]  Rolf Poulsen,et al.  Transition Densities of Diffusion Processes , 2002 .

[26]  Eisuke Kita,et al.  Options valuation by using radial basis function approximation , 2007 .

[27]  C.-S. Huang,et al.  On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs , 2010 .

[28]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[29]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[30]  Peter A. Forsyth,et al.  Numerical solution of two asset jump diffusion models for option valuation , 2008 .

[31]  First passage time distribution in an oscillating field , 1992 .

[32]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[33]  C. S. Chen,et al.  On the use of boundary conditions for variational formulations arising in financial mathematics , 2001, Appl. Math. Comput..

[34]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[35]  Luigi M. Ricciardi,et al.  On the parameter estimation for diffusion models of single neuron's activities , 1995, Biological Cybernetics.

[36]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[37]  Gabriele Steidl,et al.  Fast convolution with radial kernels at nonequispaced knots , 2004, Numerische Mathematik.

[38]  K. Lindsay,et al.  Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations , 2006 .

[39]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[40]  Kevin Parrott,et al.  Multigrid for American option pricing with stochastic volatility , 1999 .

[41]  A. Eydeland A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .

[42]  Ning Cai,et al.  On first passage times of a hyper-exponential jump diffusion process , 2009, Oper. Res. Lett..

[43]  J. Roberts,et al.  First-passage time for randomly excited non-linear oscillators , 1986 .

[44]  Benny Y. C. Hon,et al.  An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..

[45]  P. Collin‐Dufresne,et al.  Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .

[46]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[47]  Y. C. Hon,et al.  A quasi-radial basis functions method for American options pricing , 2002 .

[48]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[49]  Elisabeth Larsson,et al.  Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform , 2008 .

[50]  L. Bos,et al.  How to solve multiasset Black-Scholes with time-dependent volatility and correlation , 2000 .

[51]  Y. Hon,et al.  Multiquadric method for the numerical solution of a biphasic mixture model , 1997 .

[52]  Xinhua Hu,et al.  Valuing credit derivatives in a jump-diffusion model , 2007, Appl. Math. Comput..

[53]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[54]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[55]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[56]  Y. C. Hon,et al.  Meshless collocation method by Delta-shaped basis functions for default barrier model , 2009 .