Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions
暂无分享,去创建一个
[1] E. Kansa,et al. Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .
[2] Caroline Japhet,et al. First passage time problem for a drifted Ornstein-Uhlenbeck process. , 2004, Mathematical biosciences.
[3] E FasshauerG,et al. Using meshfree approximation for multi-asset American option problems , 2004 .
[4] S. H. Crandall. First-crossing probabilities of the linear oscillator , 1970 .
[5] Transitional Densities of Diffusion Processes , 2007 .
[6] Michael D. Marcozzi,et al. A Numerical Approach to American Currency Option Valuation , 2001 .
[7] A. Cheng,et al. Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .
[8] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[9] A. Cheng,et al. A comparison of efficiency and error convergence of multiquadric collocation method and finite element method , 2003 .
[11] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[12] A. Pacut,et al. Delayed-exponential approximation of a linear homogeneous diffusion model of neuron , 2004, Biological Cybernetics.
[13] R. L. Hardy. Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .
[14] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[15] Chunsheng Zhou,et al. The term structure of credit spreads with jump risk , 2001 .
[16] William H. Press,et al. Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.
[17] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[18] Chunbiao Gan,et al. First-passage failure of quasi-non-integrable-Hamiltonian systems , 2001 .
[19] Elisabeth Larsson,et al. Improved radial basis function methods for multi-dimensional option pricing , 2008 .
[20] M. Golberg,et al. Improved multiquadric approximation for partial differential equations , 1996 .
[21] Carsten Franke,et al. Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..
[22] S. Ross,et al. The valuation of options for alternative stochastic processes , 1976 .
[23] T. Driscoll,et al. Observations on the behavior of radial basis function approximations near boundaries , 2002 .
[24] First passage failure of quasi-partial integrable generalized Hamiltonian systems , 2010 .
[25] Rolf Poulsen,et al. Transition Densities of Diffusion Processes , 2002 .
[26] Eisuke Kita,et al. Options valuation by using radial basis function approximation , 2007 .
[27] C.-S. Huang,et al. On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs , 2010 .
[28] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[29] G. Fasshauer,et al. Using meshfree approximation for multi‐asset American options , 2004 .
[30] Peter A. Forsyth,et al. Numerical solution of two asset jump diffusion models for option valuation , 2008 .
[31] First passage time distribution in an oscillating field , 1992 .
[32] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[33] C. S. Chen,et al. On the use of boundary conditions for variational formulations arising in financial mathematics , 2001, Appl. Math. Comput..
[34] Vadim Linetsky,et al. Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..
[35] Luigi M. Ricciardi,et al. On the parameter estimation for diffusion models of single neuron's activities , 1995, Biological Cybernetics.
[36] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[37] Gabriele Steidl,et al. Fast convolution with radial kernels at nonequispaced knots , 2004, Numerische Mathematik.
[38] K. Lindsay,et al. Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations , 2006 .
[39] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[40] Kevin Parrott,et al. Multigrid for American option pricing with stochastic volatility , 1999 .
[41] A. Eydeland. A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .
[42] Ning Cai,et al. On first passage times of a hyper-exponential jump diffusion process , 2009, Oper. Res. Lett..
[43] J. Roberts,et al. First-passage time for randomly excited non-linear oscillators , 1986 .
[44] Benny Y. C. Hon,et al. An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..
[45] P. Collin‐Dufresne,et al. Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .
[46] Carsten Franke,et al. Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..
[47] Y. C. Hon,et al. A quasi-radial basis functions method for American options pricing , 2002 .
[48] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[49] Elisabeth Larsson,et al. Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform , 2008 .
[50] L. Bos,et al. How to solve multiasset Black-Scholes with time-dependent volatility and correlation , 2000 .
[51] Y. Hon,et al. Multiquadric method for the numerical solution of a biphasic mixture model , 1997 .
[52] Xinhua Hu,et al. Valuing credit derivatives in a jump-diffusion model , 2007, Appl. Math. Comput..
[53] P. Wilmott. Derivatives: The Theory and Practice of Financial Engineering , 1998 .
[54] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[55] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[56] Y. C. Hon,et al. Meshless collocation method by Delta-shaped basis functions for default barrier model , 2009 .