A User Behavior Based Study on Search Engine Ranking

In this era of information explosion, finding convenient ways to get the desired information is becoming ever more vital today. With a review of the existing information retrieval and feedback technology, this paper puts forward a method to establish and update user profile model through obtaining user’s implicit feedbacks. The user’s explicit information is not a must. Instead, this method, with the implicit information acquired by observing the behaviors of the users when browsing web pages, establishes and updates the user profile model and thus reduces the workload. Keywords : Information retrieval?Implicit feedback?Relevance feedback; User profile model

[1]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[2]  Vijay V. Raghavan,et al.  Information Retrieval on the World Wide Web , 1997, IEEE Internet Comput..

[3]  Susan T. Dumais,et al.  Evaluating implicit measures to improve the search experiences , 2003 .

[4]  Jude W. Shavlik,et al.  Learning users' interests by unobtrusively observing their normal behavior , 2000, IUI '00.

[5]  Monika Henzinger,et al.  Analysis of a very large web search engine query log , 1999, SIGF.

[6]  Mark Claypool,et al.  Inferring User Interest , 2001, IEEE Internet Comput..

[7]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[10]  Douglas W. Oard,et al.  Implicit Feedback for Recommender Systems , 1998 .

[11]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[12]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[13]  Douglas W. Oard,et al.  Modeling Information Content Using Observable Behavior , 2001 .

[14]  Yoichi Shinoda,et al.  Information filtering based on user behavior analysis and best match text retrieval , 1994, SIGIR '94.

[15]  Liu Yiqun,et al.  Research in Search Engine User Behavior Based on Log Analysis , 2004 .

[16]  Susan T. Dumais,et al.  Learning user interaction models for predicting web search result preferences , 2006, SIGIR.