Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay. DOI: http://dx.doi.org/10.7554/eLife.20362.001

[1]  L. Frank,et al.  Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory , 2012, Science.

[2]  S. Duan,et al.  Heterosynaptic long‐term depression mediated by ATP released from astrocytes , 2013, Glia.

[3]  E. Casanova,et al.  Floxed allele for conditional inactivation of the GABAB(1) gene , 2004, Genesis.

[4]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[5]  Kenji F. Tanaka,et al.  Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation , 2012, Proceedings of the National Academy of Sciences.

[6]  V. Gallo,et al.  GABAergic regulation of cerebellar NG2-cell development is altered in perinatal white matter injury , 2015, Nature Neuroscience.

[7]  S. Oliet,et al.  Long term potentiation depends on release of D-serine from astrocytes , 2009, Nature.

[8]  Eduardo D. Martín,et al.  Astrocytes Mediate In Vivo Cholinergic-Induced Synaptic Plasticity , 2012, PLoS biology.

[9]  A. Araque,et al.  Endocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes , 2010, Neuron.

[10]  Rafael Yuste,et al.  Astrocytic regulation of cortical UP states , 2011, Proceedings of the National Academy of Sciences.

[11]  B. Shen,et al.  GABAB receptor blockade enhances theta and gamma rhythms in the hippocampus of behaving rats , 2007, Hippocampus.

[12]  C. Stevens,et al.  Changes in reliability of synaptic function as a mechanism for plasticity , 1994, Nature.

[13]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[14]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[15]  Todd A Fiacco,et al.  Loss of IP3 Receptor-Dependent Ca2+ Increases in Hippocampal Astrocytes Does Not Affect Baseline CA1 Pyramidal Neuron Synaptic Activity , 2008, The Journal of Neuroscience.

[16]  Khaleel Bhaukaurally,et al.  Glutamate exocytosis from astrocytes controls synaptic strength , 2007, Nature Neuroscience.

[17]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Takano,et al.  Astrocytes and Ischemic Injury , 2009, Stroke.

[19]  W. Buño,et al.  Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons , 2002, The Journal of physiology.

[20]  S. Oliet,et al.  Gliotransmitters Travel in Time and Space , 2014, Neuron.

[21]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[22]  Cathryn L. Kubera,et al.  Astrocytic Purinergic Signaling Coordinates Synaptic Networks , 2005, Science.

[23]  H. Hirase,et al.  Astrocyte Calcium Signaling Transforms Cholinergic Modulation to Cortical Plasticity In Vivo , 2011, The Journal of Neuroscience.

[24]  Todd A Fiacco,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S4 Hippocampal Short-and Long-term Plasticity Are Not Modulated by Astrocyte Ca 2+ Signaling , 2022 .

[25]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[26]  Fabrice P Cordelières,et al.  Experimenters' guide to colocalization studies: finding a way through indicators and quantifiers, in practice. , 2014, Methods in cell biology.

[27]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[28]  D. Attwell,et al.  Do astrocytes really exocytose neurotransmitters? , 2010, Nature Reviews Neuroscience.

[29]  Khaleel Bhaukaurally,et al.  Local Ca2+ detection and modulation of synaptic release by astrocytes , 2011, Nature Neuroscience.

[30]  A. Zima,et al.  Endothelin-1 – Induced Arrhythmogenic Ca 2 Signaling Is Abolished in Atrial Myocytes of Inositol-1 , 4 , 5-Trisphosphate ( IP 3 ) – Receptor Type 2 – Deficient Mice , 2005 .

[31]  M. Gassmann,et al.  Molecular Structure and Physiological Functions of GABAB Receptors , 2004 .

[32]  C. Rose,et al.  Developmental profile and mechanisms of GABA‐induced calcium signaling in hippocampal astrocytes , 2008, Glia.

[33]  M. Chen,et al.  Glutamate-Dependent Neuroglial Calcium Signaling Differs Between Young and Adult Brain , 2013, Science.

[34]  W. Wurst,et al.  Inducible gene deletion in astroglia and radial glia—A valuable tool for functional and lineage analysis , 2006, Glia.

[35]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[36]  G. Perea,et al.  GLIA modulates synaptic transmission , 2010, Brain Research Reviews.

[37]  Christian Steinhäuser,et al.  Astrocyte dysfunction in neurological disorders: a molecular perspective , 2006, Nature Reviews Neuroscience.

[38]  Jonas Frisén,et al.  Transgenic mice for conditional gene manipulation in astroglial cells , 2007, Glia.

[39]  G. Perea,et al.  Properties of Synaptically Evoked Astrocyte Calcium Signal Reveal Synaptic Information Processing by Astrocytes , 2005, The Journal of Neuroscience.

[40]  Sharmila Venugopal,et al.  Ca2+ signaling in astrocytes from IP3R2−/− mice in brain slices and during startle responses in vivo , 2015, Nature Neuroscience.

[41]  Eduardo D. Martín,et al.  Structural and Functional Plasticity of Astrocyte Processes and Dendritic Spine Interactions , 2014, The Journal of Neuroscience.

[42]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[43]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[44]  Jin U. Kang,et al.  Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity , 2014, Neuron.

[45]  Dimitri M Kullmann,et al.  Interneuron networks in the hippocampus , 2011, Current Opinion in Neurobiology.

[46]  Terrence J. Sejnowski,et al.  Astrocytes contribute to gamma oscillations and recognition memory , 2014, Proceedings of the National Academy of Sciences.

[47]  Kira E. Poskanzer,et al.  Astrocytes regulate cortical state switching in vivo , 2016, Proceedings of the National Academy of Sciences.

[48]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[49]  Eduardo D. Martín,et al.  Synaptically Released Acetylcholine Evokes Ca2+Elevations in Astrocytes in Hippocampal Slices , 2002, The Journal of Neuroscience.

[50]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[51]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[52]  M. Gassmann,et al.  Molecular structure and physiological functions of GABA(B) receptors. , 2004, Physiological reviews.

[53]  G. Carmignoto,et al.  Astrocyte control of synaptic transmission and neurovascular coupling. , 2006, Physiological reviews.

[54]  A. Araque,et al.  Endocannabinoids Mediate Neuron-Astrocyte Communication , 2008, Neuron.

[55]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[56]  M. Sur,et al.  Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo , 2014, Nature Communications.

[57]  J. Delgado-García,et al.  Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice , 2016, PloS one.

[58]  Michael M. Halassa,et al.  Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo , 2009, Proceedings of the National Academy of Sciences.

[59]  J. Lacaille,et al.  GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression , 2006, The Journal of Neuroscience.

[60]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[61]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[62]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[63]  Letizia Mariotti,et al.  The inhibitory neurotransmitter GABA evokes long‐lasting Ca2+ oscillations in cortical astrocytes , 2015, Glia.

[64]  G. Perea,et al.  Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses , 2007, Science.

[65]  T. Oertner,et al.  Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants , 2006, Neuron.

[66]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[67]  N. Rouach,et al.  Emerging role for astroglial networks in information processing: from synapse to behavior , 2013, Trends in Neurosciences.

[68]  Fredrik Blomstrand,et al.  Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region , 2007, The Journal of physiology.

[69]  B. Staresina,et al.  Oscillations and Episodic Memory: Addressing the Synchronization/Desynchronization Conundrum , 2016, Trends in Neurosciences.

[70]  J. Lacaille,et al.  Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses , 2011, Cell.

[71]  Yue Wang,et al.  Endocannabinoids facilitate the induction of LTP in the hippocampus , 2002, Nature Neuroscience.

[72]  A. Zima,et al.  Endothelin-1–Induced Arrhythmogenic Ca2+ Signaling Is Abolished in Atrial Myocytes of Inositol-1,4,5-Trisphosphate(IP3)–Receptor Type 2–Deficient Mice , 2005, Circulation research.

[73]  T. Takano,et al.  Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices , 2014, Glia.

[74]  G. Tamás,et al.  Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex , 2015, Brain Structure and Function.

[75]  D. Ulrich,et al.  GABAB receptors: synaptic functions and mechanisms of diversity , 2007, Current Opinion in Neurobiology.