Cryptography

Publisher Summary This chapter discusses the theory of cryptography. Cryptography is about communication in the presence of adversaries. Cryptology provides methods that enable a communicating party to develop trust that his communications have the desired properties, despite of the best efforts of an untrusted party. The desired properties might include: (1) privacy: an adversary learns nothing useful about the message sent; (2) authentication: the recipient of a message can convince himself that the message as received originated with the alleged sender; (3) signatures: the recipient of a message can convince a third party that the message as received originated with the alleged signer; (4) minimality: nothing is communicated to other parties except that which is specifically desired to be communicated; (5) simultaneous exchange: something of value is not released until something else of value is received; and (6) coordination: in a multi-party communication, the parties are able to coordinate their activities toward a common goal even in the presence of adversaries.

[1]  Oded Goldreich,et al.  RSA and Rabin Functions: Certain Parts are as Hard as the Whole , 1988, SIAM J. Comput..

[2]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[3]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[4]  Whitfield Diffie,et al.  Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard , 1977, Computer.

[5]  Ralph C. Merkle,et al.  Secure communications over insecure channels , 1978, CACM.

[6]  Gideon Yuval,et al.  How to Swindle Rabin , 1979, Cryptologia.

[7]  Michael O. Rabin,et al.  Probabilistic Algorithms in Finite Fields , 1980, SIAM J. Comput..

[8]  Eric Bach,et al.  How to Generate Factored Random Numbers , 1988, SIAM J. Comput..

[9]  G. Blakley,et al.  An efficient algorithm for constructing a cryptosystem which is harder to break than two other cryptosystems , 1981 .

[10]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[11]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[12]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[13]  F. MacWilliams,et al.  Codes which detect deception , 1974 .

[14]  AARON D. WYNER An analog scrambling scheme which does not expand bandwidth, Part II: Continuous time , 1979, IEEE Trans. Inf. Theory.

[15]  Martin E. Hellman,et al.  Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.

[16]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[17]  Michael Luby,et al.  How to Construct Pseudo-Random Permutations from Pseudo-Random Functions (Abstract) , 1986, CRYPTO.

[18]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[19]  Jeffrey W. Smith,et al.  A Pipeline Architecture for Factoring Large Integers with the Quadratic Sieve Algorithm , 1988, SIAM J. Comput..

[20]  Gustavus J. Simmons,et al.  Symmetric and Asymmetric Encryption , 1979, CSUR.

[21]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[22]  Avi Wigderson,et al.  The Discrete Logarithm Hides O(log n) Bits , 1988, SIAM J. Comput..

[23]  Martin E. Hellman,et al.  A cryptanalytic time-memory trade-off , 1980, IEEE Trans. Inf. Theory.

[24]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[25]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[26]  Roger M. Needham,et al.  Using encryption for authentication in large networks of computers , 1978, CACM.

[27]  Adi Shamir,et al.  How to expose an eavesdropper , 1984, CACM.

[28]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[29]  Edwin Weiss,et al.  A user authentication scheme not requiring secrecy in the computer , 1974, Commun. ACM.

[30]  L. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[31]  M.E. Hellman,et al.  Privacy and authentication: An introduction to cryptography , 1979, Proceedings of the IEEE.

[32]  Andrew M. Odlyzko,et al.  Cryptanalytic attacks on the multiplicative knapsack cryptosystem and on Shamir's fast signature scheme , 1984, IEEE Trans. Inf. Theory.

[33]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[34]  Peter J. Denning,et al.  Data Security , 1979, CSUR.

[35]  Johan Håstad,et al.  Solving Simultaneous Modular Equations of Low Degree , 1988, SIAM J. Comput..

[36]  Martin E. Hellman,et al.  An extension of the Shannon theory approach to cryptography , 1977, IEEE Trans. Inf. Theory.

[37]  Manuel Blum,et al.  How to exchange (secret) keys , 1983, TOCS.

[38]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[39]  Silvio Micali,et al.  A Fair Protocol for Signing Contracts (Extended Abstract) , 1985, ICALP.

[40]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[41]  Abraham Lempel,et al.  Cryptology in Transition , 1979, CSUR.

[42]  Alan M. Frieze,et al.  Reconstructing Truncated Integer Variables Satisfying Linear Congruences , 1988, SIAM J. Comput..

[43]  Bowen Alpern,et al.  Key Exchange Using 'Keyless Cryptography' , 1983, Inf. Process. Lett..

[44]  Aaron D. Wyner An analog scrambling scheme which does not expand bandwidth, Part I: Discrete time , 1979, IEEE Trans. Inf. Theory.

[45]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[46]  Adi Shamir,et al.  On the Generation of Cryptographically Strong Pseudo-Random Sequences , 1981, ICALP.

[47]  M. Hellman The Mathematics of Public-Key Cryptography , 1979 .

[48]  Silvio Micali,et al.  The Notion of Security for Probabilistic Cryptosystems , 1986, CRYPTO.

[49]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[50]  Oded Goldreich,et al.  On the power of cascade ciphers , 1985, TOCS.

[51]  David Chaum,et al.  Untraceable electronic mail, return addresses, and digital pseudonyms , 1981, CACM.

[52]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[53]  M. Rabin Probabilistic algorithm for testing primality , 1980 .