Statistical correlation analysis in image retrieval

A statistical correlation model for image retrieval is proposed. This model captures the semantic relationships among images in a database from simple statistics of user-provided relevance feedback information. It is applied in the post-processing of image retrieval results such that more semantically related images are returned to the user. The algorithm is easy to implement and can be efficiently integrated into an image retrieval system to help improve the retrieval performance. Preliminary experimental results on a database of 100,000 images show that the proposed model could improve image retrieval performance for both content- and text-based queries.

[1]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[2]  Jing Huang,et al.  Combining supervised learning with color correlograms for content-based image retrieval , 1997, MULTIMEDIA '97.

[3]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[4]  Ingemar J. Cox,et al.  PicHunter: Bayesian relevance feedback for image retrieval , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[5]  Neill W. Campbell,et al.  Iterative refinement by relevance feedback in content-based digital image retrieval , 1998, MULTIMEDIA '98.

[6]  Wei-Ying Ma,et al.  Information embedding based on user's relevance feedback for image retrieval , 1999, Optics East.

[7]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[8]  Qiang Yang,et al.  A unified framework for semantics and feature based relevance feedback in image retrieval systems , 2000, ACM Multimedia.

[9]  Mingjing Li,et al.  Web mining for Web image retrieval , 2001, J. Assoc. Inf. Sci. Technol..

[10]  S. Sclaroff,et al.  ImageRover: a content-based image browser for the World Wide Web , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[11]  Ronald Rosenfeld,et al.  Statistical language modeling using the CMU-cambridge toolkit , 1997, EUROSPEECH.

[12]  Liu Wenyin,et al.  iFind—a system for semantics and feature based image retrieval over Internet , 2000, MM 2000.

[13]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[14]  Aya Soffer,et al.  PicASHOW: pictorial authority search by hyperlinks on the Web , 2001, WWW '01.

[15]  Gerard Salton,et al.  Optimization of relevance feedback weights , 1995, SIGIR '95.

[16]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[17]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[18]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[19]  Thomas S. Huang,et al.  A novel relevance feedback technique in image retrieval , 1999, MULTIMEDIA '99.

[20]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[21]  Mingjing Li,et al.  A statistical correlation model for image retrieval , 2001, MULTIMEDIA '01.

[22]  Nuno Vasconcelos,et al.  Learning from User Feedback in Image Retrieval Systems , 1999, NIPS.

[23]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.