Formulation and optimization of the energy-based blended quasicontinuum method

We formulate an energy-based atomistic-to-continuum coupling method based on blending the quasicontinuum method for the simulation of crystal defects. We utilize theoretical results from Ortner and Van Koten (manuscript) to derive optimal choices of approximation parameters (blending function and finite element grid) for microcrack and di-vacancy test problems and confirm our analytical predictions in numerical tests.

[1]  Brian Van Koten,et al.  Symmetries of 2-Lattices and Second Order Accuracy of the Cauchy-Born Model , 2012, Multiscale Model. Simul..

[2]  R. A. Johnson,et al.  Analytic embedded atom method model for bcc metals , 1989 .

[3]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[4]  Mitchell Luskin,et al.  A multilattice quasicontinuum for phase transforming materials: Cascading Cauchy Born kinematics , 2007 .

[5]  Christoph Ortner,et al.  Construction and Sharp Consistency Estimates for Atomistic/Continuum Coupling Methods with General Interfaces: A Two-Dimensional Model Problem , 2012, SIAM J. Numer. Anal..

[6]  Assyr Abdulle,et al.  Numerical Methods for Multilattices , 2011, Multiscale Model. Simul..

[7]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[8]  Mitchell Luskin,et al.  Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, Multiscale Model. Simul..

[9]  Harold S. Park,et al.  Three-dimensional bridging scale analysis of dynamic fracture , 2005 .

[10]  Alexander V. Shapeev,et al.  Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice , 2011 .

[11]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[12]  Thomas Y. Hou,et al.  Numerical Analysis of Multiscale Problems , 2012 .

[13]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[14]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[15]  J. Tinsley Oden,et al.  Error Control for Molecular Statics Problems , 2006 .

[16]  Alexander V. Shapeev Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in Three Dimensions , 2012, SIAM J. Sci. Comput..

[17]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[18]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[19]  C. Ortner,et al.  ON THE STABILITY OF BRAVAIS LATTICES AND THEIR CAUCHY-BORN APPROXIMATIONS ∗ , 2012 .

[20]  Mitchell Luskin,et al.  Goal-Oriented Adaptive Mesh Refinement for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, 0711.1876.

[21]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[22]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[23]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[24]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[25]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..

[27]  Rajendra R. Zope,et al.  Interatomic potentials for atomistic simulations of the Ti-Al system , 2003, cond-mat/0306298.

[28]  Christoph Ortner,et al.  Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem , 2011 .

[29]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[30]  Siegfried Schmauder,et al.  Modelling Fracture Processes in Metals and Composite Materials / Modellieren von Bruchvorgängen in Metallen und Verbundwerkstoffen , 1989 .

[31]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[32]  V. Gavini,et al.  A field theoretical approach to the quasi-continuum method , 2011 .

[33]  F. Frank,et al.  One-dimensional dislocations IV. Dynamics , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .