Global bifurcation of vortex and dipole solutions in Bose-Einstein condensates

The Gross-Pitaevskii equation for a Bose-Einstein condensate (BEC) with symmetric harmonic trap is given in (1). Periodic solutions of (1) play an important role in the understanding of the long term behavior of its solutions. In this note we prove the existence of several global branches of solutions to (1) among which there are vortex solutions and dipole solutions.

[1]  Robert L. Jerrard,et al.  Vortex dynamics for the two dimensional non homogeneous Gross-Pitaevskii equation , 2013, 1301.5213.

[2]  D. J. Frantzeskakis,et al.  Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates , 2011, 1104.0092.

[3]  D. J. Frantzeskakis,et al.  Dynamics of vortex dipoles in confined BoseEinstein condensates , 2011, 1106.5764.

[4]  Louis Nirenberg,et al.  Topics in Nonlinear Functional Analysis , 2001 .

[5]  P. Kevrekidis,et al.  Bifurcations of Asymmetric Vortices in Symmetric Harmonic Traps , 2012 .

[6]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[7]  Dmitry E. Pelinovsky,et al.  Variational approximations of trapped vortices in the large-density limit , 2011 .

[8]  Z. Balanov,et al.  A short treatise on the equivariant degree theory and its applications , 2010 .

[9]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[10]  M. M. Salomaa,et al.  Stationary vortex clusters in nonrotating Bose-Einstein condensates , 2005 .

[11]  D. Haar,et al.  Quantum Mechanics Vol. 1 , 1965 .

[12]  Panayotis G. Kevrekidis,et al.  Dynamics of Vortex Dipoles in Anisotropic Bose-Einstein Condensates , 2014, SIAM J. Appl. Dyn. Syst..

[13]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[14]  Mikko Mottonen,et al.  Size and dynamics of vortex dipoles in dilute Bose-Einstein condensates , 2010, 1011.1661.

[15]  Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems , 2012 .