Crustal Magnetic Fields of Terrestrial Planets
暂无分享,去创建一个
Mioara Mandea | Vincent Lesur | Michael E. Purucker | John E. P. Connerney | J. Connerney | B. Langlais | V. Lesur | M. Mandea | M. Purucker | B. Langlais
[1] Raymond E. Arvidson,et al. Overview of the Mars Global Surveyor mission , 2001 .
[2] D. Dunlop,et al. 5.08 – Magnetizations in Rocks and Minerals , 2007 .
[3] J. Achache,et al. Contribution of induced and remanent magnetization to long‐wavelength oceanic magnetic anomalies , 1994 .
[4] N. Ness,et al. Magnetic field of Mercury confirmed , 1975, Nature.
[5] M. Acuna,et al. The magnetic field in the pile‐up region at Mars, and its variation with the solar wind , 2003 .
[6] R. Langel. Global magnetic anomaly maps derived from POGO spacecraft data , 1990 .
[7] Bruce Fegley,et al. The Planetary Scientist's Companion , 1998 .
[8] R. Blakely. Potential theory in gravity and magnetic applications , 1996 .
[9] B. Langlais,et al. The Origin of Mercury’s Internal Magnetic Field , 2007 .
[10] C. Mével. Serpentinization of abyssal peridotites at mid-ocean ridges , 2003 .
[11] K. Whaler,et al. Minimal crustal magnetizations from satellite data , 1996 .
[12] M. A. Mayhew,et al. Inversion of satellite magnetic anomaly data , 1979 .
[13] S. Cande,et al. Skewness of marine magnetic anomalies created between 85 and 40 Ma in the Indian Ocean , 1994 .
[14] J. Arkani‐Hamed,et al. Impact demagnetization of the martian crust , 2004 .
[15] J. Connerney,et al. Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .
[16] Malcolm G. McLeod,et al. Spatial and temporal power spectra of the geomagnetic field , 1996 .
[17] H. Nataf,et al. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling , 1996 .
[18] M. Zuber,et al. Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin , 2009 .
[19] J. Cain,et al. An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .
[20] Erwan Thébault,et al. Applied comparisons between SCHA and R‐SCHA regional modeling techniques , 2008 .
[21] J. LaBrecque,et al. Magnetization of the oceanic crust - Thermoremanent magnetization of chemical remanent magnetization? , 1987 .
[22] Mioara Mandea,et al. Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties , 2006 .
[23] L. Hood,et al. Formation of magnetic anomalies antipodal to lunar impact basins: Two‐dimensional model calculations , 1991 .
[24] N. Pushkov,et al. Preliminary report on geomagnetic measurements on the third Soviet artificial earth satellite , 1961 .
[25] C. Russell,et al. The Martian magnetic field environment: Induced or dominated by an intrinsic magnetic field? , 1992 .
[26] Jonathan M. Aurnou,et al. A numerical study of dynamo action as a function of spherical shell geometry , 2005 .
[27] K. Glassmeier,et al. Rosetta swing-by at Mars – an analysis of the ROMAP measurements in comparison with results of 3-D multi-ion hybrid simulations and MEX/ASPERA-3 data , 2009 .
[28] C. Laj,et al. Magnetic Anomalies Over Oceanic Ridges , 1963, Nature.
[29] D. Mitchell,et al. A global map of Mars' crustal magnetic field based on electron reflectometry , 2007 .
[30] William V. Boynton,et al. Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution , 2007 .
[31] Nils Olsen,et al. On the geographical distribution of induced time‐varying crustal magnetic fields , 2009 .
[32] J. Cain,et al. Small-scale features in the Earth's magnetic field observed by Magsat. , 1984 .
[33] Erwan Thébault,et al. A proposal for regional modelling at the Earth's surface, R-SCHA2D , 2008 .
[34] Ness,et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.
[35] J. Frawley,et al. PALEO-POLE POSITIONS FROM MARTIAN MAGNETIC ANOMALY DATA , 2003 .
[36] D. Stevenson. Planetary magnetic fields , 2003 .
[37] Gabi Laske,et al. CRUST 5.1: A global crustal model at 5° × 5° , 1998 .
[38] M. Boustie,et al. On the efficiency of shock magnetization processes , 2008 .
[39] N. Artemieva,et al. Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations , 2008 .
[40] G. Schubert,et al. Magnetism and thermal evolution of the terrestrial planets , 1983 .
[41] V. Perminov,et al. The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union , 2012 .
[42] J. Sauvaud,et al. Mars Observer magnetic fields investigation , 1992 .
[43] M. Purucker,et al. Global magnetization models with a priori information , 1998 .
[44] S. K. Croft,et al. Cratering flow fields - Implications for the excavation and transient expansion stages of crater formation , 1980 .
[45] D. Mitchell,et al. Global mapping of lunar crustal magnetic fields by Lunar Prospector , 2008 .
[46] Ulrich R. Christensen,et al. A deep dynamo generating Mercury’s magnetic field , 2006, Nature.
[47] S. Runcorn. On the interpretation of lunar magnetism , 1975 .
[48] Mioara Mandea,et al. Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R‐SCHA) , 2006 .
[49] Nils Olsen,et al. FAST TRACK PAPER: Crustal concealing of small-scale core-field secular variation , 2009 .
[50] C. Mayer,et al. Separating inner and outer Earth's magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets , 2006 .
[51] M. Zuber,et al. Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? , 2004 .
[52] T. Gold,et al. Cometary impact and the magnetization of the Moon , 1976 .
[53] M. Manga,et al. Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars , 2008 .
[54] M. Manga,et al. Giant impacts on early Mars and the cessation of the Martian dynamo , 2009 .
[55] Mioara Mandea,et al. Rapidly changing flows in the Earth's core , 2008 .
[56] J. Arkani‐Hamed. Paleomagnetic pole positions and pole reversals of Mars , 2001 .
[57] C. Sotin,et al. Mars environment and magnetic orbiter model payload , 2009 .
[58] F. Nimmo. Why does Venus lack a magnetic field , 2002 .
[59] Philippe Lognonné,et al. A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .
[60] Todor Delipetrov,et al. Geomagnetics for aeronautical safety : a case study in and around the Balkans , 2006 .
[61] S. Maus,et al. Magnetic field annihilators: invisible magnetization at the magnetic equator , 2003 .
[62] B. Langlais,et al. New perspectives on Mars’ crustal magnetic field , 2008 .
[63] L. Carporzen,et al. Magnetic imaging of the Vredefort impact crater, South Africa , 2007 .
[64] E. Pierazzo,et al. Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .
[65] G. Hulot,et al. Swarm: A constellation to study the Earth’s magnetic field , 2006 .
[66] Hermann Lühr,et al. Fifth‐generation lithospheric magnetic field model from CHAMP satellite measurements , 2007 .
[67] B. Weiss,et al. Early Lunar Magnetism , 2007, Science.
[68] M. Purucker. A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations , 2008 .
[69] Mioara Mandea,et al. Crustal magnetic field of Mars , 2004 .
[70] David J. Dunlop,et al. Rock Magnetism: Fundamentals and Frontiers , 1997 .
[71] H. Frey. Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .
[72] D. Mitchell,et al. The global magnetic field of Mars and implications for crustal evolution , 2001 .
[73] Nils Olsen,et al. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field , 2002 .
[74] Thomas Widemann,et al. GEOCHEMISTRY OF SURFACE-ATMOSPHERE INTERACTIONS ON VENUS , 2022, Venus II.
[75] G. Schubert,et al. Treatise on geophysics , 2007 .
[76] J. Needham. Science and civilisation in China , 1963 .
[77] A. Stephenson,et al. Crustal remanence and the magnetic moment of Mercury , 1976 .
[78] J. Cadet,et al. Commission for the Geological Map of the World (CGMW) , 2002 .
[79] M. Chiappini,et al. Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy) , 2007 .
[80] L. Hood,et al. High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .
[81] C. Sotin,et al. Serpentinization of the martian crust during Noachian , 2008 .
[82] D. Dunlop,et al. Magnetizations in Rocks and Minerals , 2007 .
[83] Ness,et al. Magnetic lineations in the ancient crust of mars , 1999, Science.
[84] B. Langlais,et al. A polar magnetic paleopole associated with Apollinaris Patera Mars , 2007 .
[85] David J. Dunlop,et al. Rock Magnetism: Frontmatter , 1997 .
[86] Mioara Mandea,et al. Observing, Modeling, and Interpreting Magnetic Fields of the Solid Earth , 2005 .
[87] P. Schultz,et al. Electromagnetic properties of impact-generated plasma, vapor and debris , 1998 .
[88] J. Achache,et al. The global continent-ocean magnetization contrast , 1991 .
[89] L. Hood,et al. A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data , 2008 .
[90] Hermann Lühr,et al. Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements , 2008 .
[91] J. Arkani‐Hamed,et al. Equivalent source magnetic dipoles revisited , 1998 .
[92] J. M. Torta,et al. SPHERICAL CAP HARMONIC ANALYSIS OF THE GEOMAGNETIC FIELD WITH APPLICATION FOR AERONAUTICAL MAPPING , 2006 .
[93] H. Henkel,et al. Scientific comment on “Muundjua et al., 2007: Magnetic imaging of the Vredefort impact crater, South Africa, EPSL 261, 456–468” , 2008 .
[94] L. Hood,et al. Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian , 2005 .
[95] Magnetic images of the Sumatra region crust , 2005 .
[96] J. Arkani‐Hamed. A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .
[97] E. Smith,et al. Magnetic Field Measurements near Mars , 1965, Science.
[98] Walter H. F. Smith,et al. Free software helps map and display data , 1991 .
[99] A. Binder,et al. Lunar Prospector: overview. , 1998, Science.
[100] F. R. Colomb,et al. SAC-C mission, an example of international cooperation , 2002 .
[101] The question of a Martian planetary magnetic field , 1992 .
[102] H. Frey,et al. An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .
[103] B. Ivanov,et al. Impact demagnetization of the Martian crust: Primaries versus secondaries , 2005 .
[104] P. Taylor,et al. A possible impact origin for the Bangui magnetic anomaly (Central Africa) , 1992 .
[105] A. Balogh,et al. Mercury's thermoelectric dynamo model revisited , 2002 .
[106] M. Zuber,et al. Thin shell dynamo models consistent with Mercury's weak observed magnetic field [rapid communication] , 2005 .
[107] Leonard J. Srnka,et al. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field] , 1976 .
[108] R. Parker,et al. The application of inverse theory to seamount magnetism , 1987 .
[109] Jafar Arkani-Hamed,et al. A coherent model of the crustal magnetic field of Mars , 2004 .
[110] G. Schubert,et al. Mars Crustal Magnetism , 2004 .
[111] S. Cisowski,et al. The effect of shock on the magnetism of terrestrial rocks , 1978 .
[112] G. Schubert,et al. Lithospheric structure in the eastern region of Mars’ dichotomy boundary , 2007 .
[113] M. Matsushima,et al. Dipolar and non‐dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury , 2006 .
[114] R. Parker. Ideal bodies for Mars magnetics , 2003 .
[115] Michael E. Purucker,et al. Conjugate gradient analysis: A new tool for studying satellite magnetic data sets , 1996 .
[116] D. Mitchell,et al. Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .
[117] Jerzy Jankowski,et al. IAGA guide for magnetic measurements and observatory practice , 1996 .
[118] R. Blakely,et al. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle , 2005 .
[119] C. Sotin,et al. Modelling and inversion of local magnetic anomalies , 2008 .
[120] Mioara Mandea,et al. Ørsted Initial Field Model , 2000 .
[121] Mioara Mandea,et al. GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data , 2008 .
[122] M. Manga,et al. Demagnetization of crust by magmatic intrusion near the Arsia Mons volcano: Magnetic and thermal implications for the development of the Tharsis province, Mars , 2009 .
[123] Nils Olsen,et al. Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .
[124] V. Lesur,et al. Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field , 2000 .
[125] N F Ness. The Magnetic Fields of Mercury, Mars, and Moon , 1979 .
[126] M. Purucker,et al. A spatially continuous magnetization model for Mars , 2005 .
[127] D. Mitchell,et al. Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[128] Vincent Lesur,et al. Introducing localized constraints in global geomagnetic field modelling , 2006 .
[129] S. Maus,et al. A global lithospheric magnetic field model with reduced noise level in the Polar Regions , 2006 .
[130] Mioara Mandea,et al. The southern edge of cratonic North America: Evidence from new satellite magnetometer observations , 2002 .
[131] J. Kurths,et al. The question of an internal martian magnetic field , 1991 .
[132] V. Lesur,et al. Exact solutions for internally induced magnetization in a shell , 2000 .
[133] C. Reigber,et al. CHAMP mission status , 2002 .
[134] G. V. Haines. Spherical cap harmonic analysis , 1985 .
[135] L. Hood,et al. Mapping and modeling of magnetic anomalies in the northern polar region of Mars , 2001 .
[136] Mario H. Acuna,et al. An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo , 2008 .
[137] James A. Slavin,et al. The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby , 2008, Science.
[138] D. Stevenson. Mercury's magnetic field: a thermoelectric dynamo? , 1987 .
[139] L. Carporzen,et al. Reply to comment by W.U. Reimold, R.L. Gibson, and H. Henkel on Muundjua et al. (2007), “Magnetic imaging of the Vredefort impact crater, South Africa”, EPSL 261, pp 456–468 , 2008 .
[140] J. Kurths,et al. Magnetic fields near Mars: first results , 1989, Nature.
[141] J. Slavin,et al. The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape , 1991 .
[142] C. Sotin,et al. Local inversion of magnetic anomalies: Implication for Mars’ crustal evolution , 2007 .
[143] Mioara Mandea,et al. Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .
[144] M. Zuber,et al. Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby , 2008, Science.
[145] Robert D. Regan,et al. A global magnetic anomaly map , 1975 .
[146] B. Langlais,et al. Observatory crustal magnetic biases during MAGSAT and Ørsted satellite missions , 2002 .