Crustal Magnetic Fields of Terrestrial Planets

Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.

[1]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[2]  D. Dunlop,et al.  5.08 – Magnetizations in Rocks and Minerals , 2007 .

[3]  J. Achache,et al.  Contribution of induced and remanent magnetization to long‐wavelength oceanic magnetic anomalies , 1994 .

[4]  N. Ness,et al.  Magnetic field of Mercury confirmed , 1975, Nature.

[5]  M. Acuna,et al.  The magnetic field in the pile‐up region at Mars, and its variation with the solar wind , 2003 .

[6]  R. Langel Global magnetic anomaly maps derived from POGO spacecraft data , 1990 .

[7]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[8]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[9]  B. Langlais,et al.  The Origin of Mercury’s Internal Magnetic Field , 2007 .

[10]  C. Mével Serpentinization of abyssal peridotites at mid-ocean ridges , 2003 .

[11]  K. Whaler,et al.  Minimal crustal magnetizations from satellite data , 1996 .

[12]  M. A. Mayhew,et al.  Inversion of satellite magnetic anomaly data , 1979 .

[13]  S. Cande,et al.  Skewness of marine magnetic anomalies created between 85 and 40 Ma in the Indian Ocean , 1994 .

[14]  J. Arkani‐Hamed,et al.  Impact demagnetization of the martian crust , 2004 .

[15]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[16]  Malcolm G. McLeod,et al.  Spatial and temporal power spectra of the geomagnetic field , 1996 .

[17]  H. Nataf,et al.  3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling , 1996 .

[18]  M. Zuber,et al.  Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin , 2009 .

[19]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .

[20]  Erwan Thébault,et al.  Applied comparisons between SCHA and R‐SCHA regional modeling techniques , 2008 .

[21]  J. LaBrecque,et al.  Magnetization of the oceanic crust - Thermoremanent magnetization of chemical remanent magnetization? , 1987 .

[22]  Mioara Mandea,et al.  Revised spherical cap harmonic analysis (R‐SCHA): Validation and properties , 2006 .

[23]  L. Hood,et al.  Formation of magnetic anomalies antipodal to lunar impact basins: Two‐dimensional model calculations , 1991 .

[24]  N. Pushkov,et al.  Preliminary report on geomagnetic measurements on the third Soviet artificial earth satellite , 1961 .

[25]  C. Russell,et al.  The Martian magnetic field environment: Induced or dominated by an intrinsic magnetic field? , 1992 .

[26]  Jonathan M. Aurnou,et al.  A numerical study of dynamo action as a function of spherical shell geometry , 2005 .

[27]  K. Glassmeier,et al.  Rosetta swing-by at Mars – an analysis of the ROMAP measurements in comparison with results of 3-D multi-ion hybrid simulations and MEX/ASPERA-3 data , 2009 .

[28]  C. Laj,et al.  Magnetic Anomalies Over Oceanic Ridges , 1963, Nature.

[29]  D. Mitchell,et al.  A global map of Mars' crustal magnetic field based on electron reflectometry , 2007 .

[30]  William V. Boynton,et al.  Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution , 2007 .

[31]  Nils Olsen,et al.  On the geographical distribution of induced time‐varying crustal magnetic fields , 2009 .

[32]  J. Cain,et al.  Small-scale features in the Earth's magnetic field observed by Magsat. , 1984 .

[33]  Erwan Thébault,et al.  A proposal for regional modelling at the Earth's surface, R-SCHA2D , 2008 .

[34]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[35]  J. Frawley,et al.  PALEO-POLE POSITIONS FROM MARTIAN MAGNETIC ANOMALY DATA , 2003 .

[36]  D. Stevenson Planetary magnetic fields , 2003 .

[37]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[38]  M. Boustie,et al.  On the efficiency of shock magnetization processes , 2008 .

[39]  N. Artemieva,et al.  Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations , 2008 .

[40]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[41]  V. Perminov,et al.  The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union , 2012 .

[42]  J. Sauvaud,et al.  Mars Observer magnetic fields investigation , 1992 .

[43]  M. Purucker,et al.  Global magnetization models with a priori information , 1998 .

[44]  S. K. Croft,et al.  Cratering flow fields - Implications for the excavation and transient expansion stages of crater formation , 1980 .

[45]  D. Mitchell,et al.  Global mapping of lunar crustal magnetic fields by Lunar Prospector , 2008 .

[46]  Ulrich R. Christensen,et al.  A deep dynamo generating Mercury’s magnetic field , 2006, Nature.

[47]  S. Runcorn On the interpretation of lunar magnetism , 1975 .

[48]  Mioara Mandea,et al.  Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R‐SCHA) , 2006 .

[49]  Nils Olsen,et al.  FAST TRACK PAPER: Crustal concealing of small-scale core-field secular variation , 2009 .

[50]  C. Mayer,et al.  Separating inner and outer Earth's magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets , 2006 .

[51]  M. Zuber,et al.  Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? , 2004 .

[52]  T. Gold,et al.  Cometary impact and the magnetization of the Moon , 1976 .

[53]  M. Manga,et al.  Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars , 2008 .

[54]  M. Manga,et al.  Giant impacts on early Mars and the cessation of the Martian dynamo , 2009 .

[55]  Mioara Mandea,et al.  Rapidly changing flows in the Earth's core , 2008 .

[56]  J. Arkani‐Hamed Paleomagnetic pole positions and pole reversals of Mars , 2001 .

[57]  C. Sotin,et al.  Mars environment and magnetic orbiter model payload , 2009 .

[58]  F. Nimmo Why does Venus lack a magnetic field , 2002 .

[59]  Philippe Lognonné,et al.  A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .

[60]  Todor Delipetrov,et al.  Geomagnetics for aeronautical safety : a case study in and around the Balkans , 2006 .

[61]  S. Maus,et al.  Magnetic field annihilators: invisible magnetization at the magnetic equator , 2003 .

[62]  B. Langlais,et al.  New perspectives on Mars’ crustal magnetic field , 2008 .

[63]  L. Carporzen,et al.  Magnetic imaging of the Vredefort impact crater, South Africa , 2007 .

[64]  E. Pierazzo,et al.  Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .

[65]  G. Hulot,et al.  Swarm: A constellation to study the Earth’s magnetic field , 2006 .

[66]  Hermann Lühr,et al.  Fifth‐generation lithospheric magnetic field model from CHAMP satellite measurements , 2007 .

[67]  B. Weiss,et al.  Early Lunar Magnetism , 2007, Science.

[68]  M. Purucker A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations , 2008 .

[69]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[70]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[71]  H. Frey Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .

[72]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[73]  Nils Olsen,et al.  First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field , 2002 .

[74]  Thomas Widemann,et al.  GEOCHEMISTRY OF SURFACE-ATMOSPHERE INTERACTIONS ON VENUS , 2022, Venus II.

[75]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[76]  J. Needham Science and civilisation in China , 1963 .

[77]  A. Stephenson,et al.  Crustal remanence and the magnetic moment of Mercury , 1976 .

[78]  J. Cadet,et al.  Commission for the Geological Map of the World (CGMW) , 2002 .

[79]  M. Chiappini,et al.  Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy) , 2007 .

[80]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[81]  C. Sotin,et al.  Serpentinization of the martian crust during Noachian , 2008 .

[82]  D. Dunlop,et al.  Magnetizations in Rocks and Minerals , 2007 .

[83]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[84]  B. Langlais,et al.  A polar magnetic paleopole associated with Apollinaris Patera Mars , 2007 .

[85]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[86]  Mioara Mandea,et al.  Observing, Modeling, and Interpreting Magnetic Fields of the Solid Earth , 2005 .

[87]  P. Schultz,et al.  Electromagnetic properties of impact-generated plasma, vapor and debris , 1998 .

[88]  J. Achache,et al.  The global continent-ocean magnetization contrast , 1991 .

[89]  L. Hood,et al.  A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data , 2008 .

[90]  Hermann Lühr,et al.  Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements , 2008 .

[91]  J. Arkani‐Hamed,et al.  Equivalent source magnetic dipoles revisited , 1998 .

[92]  J. M. Torta,et al.  SPHERICAL CAP HARMONIC ANALYSIS OF THE GEOMAGNETIC FIELD WITH APPLICATION FOR AERONAUTICAL MAPPING , 2006 .

[93]  H. Henkel,et al.  Scientific comment on “Muundjua et al., 2007: Magnetic imaging of the Vredefort impact crater, South Africa, EPSL 261, 456–468” , 2008 .

[94]  L. Hood,et al.  Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian , 2005 .

[95]  Magnetic images of the Sumatra region crust , 2005 .

[96]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[97]  E. Smith,et al.  Magnetic Field Measurements near Mars , 1965, Science.

[98]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[99]  A. Binder,et al.  Lunar Prospector: overview. , 1998, Science.

[100]  F. R. Colomb,et al.  SAC-C mission, an example of international cooperation , 2002 .

[101]  The question of a Martian planetary magnetic field , 1992 .

[102]  H. Frey,et al.  An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .

[103]  B. Ivanov,et al.  Impact demagnetization of the Martian crust: Primaries versus secondaries , 2005 .

[104]  P. Taylor,et al.  A possible impact origin for the Bangui magnetic anomaly (Central Africa) , 1992 .

[105]  A. Balogh,et al.  Mercury's thermoelectric dynamo model revisited , 2002 .

[106]  M. Zuber,et al.  Thin shell dynamo models consistent with Mercury's weak observed magnetic field [rapid communication] , 2005 .

[107]  Leonard J. Srnka,et al.  Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field] , 1976 .

[108]  R. Parker,et al.  The application of inverse theory to seamount magnetism , 1987 .

[109]  Jafar Arkani-Hamed,et al.  A coherent model of the crustal magnetic field of Mars , 2004 .

[110]  G. Schubert,et al.  Mars Crustal Magnetism , 2004 .

[111]  S. Cisowski,et al.  The effect of shock on the magnetism of terrestrial rocks , 1978 .

[112]  G. Schubert,et al.  Lithospheric structure in the eastern region of Mars’ dichotomy boundary , 2007 .

[113]  M. Matsushima,et al.  Dipolar and non‐dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury , 2006 .

[114]  R. Parker Ideal bodies for Mars magnetics , 2003 .

[115]  Michael E. Purucker,et al.  Conjugate gradient analysis: A new tool for studying satellite magnetic data sets , 1996 .

[116]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[117]  Jerzy Jankowski,et al.  IAGA guide for magnetic measurements and observatory practice , 1996 .

[118]  R. Blakely,et al.  Subduction-zone magnetic anomalies and implications for hydrated forearc mantle , 2005 .

[119]  C. Sotin,et al.  Modelling and inversion of local magnetic anomalies , 2008 .

[120]  Mioara Mandea,et al.  Ørsted Initial Field Model , 2000 .

[121]  Mioara Mandea,et al.  GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data , 2008 .

[122]  M. Manga,et al.  Demagnetization of crust by magmatic intrusion near the Arsia Mons volcano: Magnetic and thermal implications for the development of the Tharsis province, Mars , 2009 .

[123]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[124]  V. Lesur,et al.  Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field , 2000 .

[125]  N F Ness The Magnetic Fields of Mercury, Mars, and Moon , 1979 .

[126]  M. Purucker,et al.  A spatially continuous magnetization model for Mars , 2005 .

[127]  D. Mitchell,et al.  Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[128]  Vincent Lesur,et al.  Introducing localized constraints in global geomagnetic field modelling , 2006 .

[129]  S. Maus,et al.  A global lithospheric magnetic field model with reduced noise level in the Polar Regions , 2006 .

[130]  Mioara Mandea,et al.  The southern edge of cratonic North America: Evidence from new satellite magnetometer observations , 2002 .

[131]  J. Kurths,et al.  The question of an internal martian magnetic field , 1991 .

[132]  V. Lesur,et al.  Exact solutions for internally induced magnetization in a shell , 2000 .

[133]  C. Reigber,et al.  CHAMP mission status , 2002 .

[134]  G. V. Haines Spherical cap harmonic analysis , 1985 .

[135]  L. Hood,et al.  Mapping and modeling of magnetic anomalies in the northern polar region of Mars , 2001 .

[136]  Mario H. Acuna,et al.  An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo , 2008 .

[137]  James A. Slavin,et al.  The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby , 2008, Science.

[138]  D. Stevenson Mercury's magnetic field: a thermoelectric dynamo? , 1987 .

[139]  L. Carporzen,et al.  Reply to comment by W.U. Reimold, R.L. Gibson, and H. Henkel on Muundjua et al. (2007), “Magnetic imaging of the Vredefort impact crater, South Africa”, EPSL 261, pp 456–468 , 2008 .

[140]  J. Kurths,et al.  Magnetic fields near Mars: first results , 1989, Nature.

[141]  J. Slavin,et al.  The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape , 1991 .

[142]  C. Sotin,et al.  Local inversion of magnetic anomalies: Implication for Mars’ crustal evolution , 2007 .

[143]  Mioara Mandea,et al.  Wavelet frames: an alternative to spherical harmonic representation of potential fields , 2004 .

[144]  M. Zuber,et al.  Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby , 2008, Science.

[145]  Robert D. Regan,et al.  A global magnetic anomaly map , 1975 .

[146]  B. Langlais,et al.  Observatory crustal magnetic biases during MAGSAT and Ørsted satellite missions , 2002 .