Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications.

In recent years, nanomaterials have captured the attention of scientists from a wide spectrum of domains. With their unique properties, nanomaterials offer great promise for numerous applications, ranging from catalysis to energy harvesting and information technology. Functionalized with the desired biomolecules, nanomaterials can also be utilized for many biomedical applications. This paper summarizes recent achievements in the use of aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. First, we discuss the features and properties of aptamers and then illustrate the use of aptamer-conjugated nanomaterials as sensing platforms and delivery vehicles, emphasizing how such integration can result in enhanced sensitivity and selectivity.

[1]  Tao Wang,et al.  Paclitaxel-loaded polymeric micelles modified with MCF-7 cell-specific phage protein: enhanced binding to target cancer cells and increased cytotoxicity. , 2010, Molecular pharmaceutics.

[2]  Yong Wang,et al.  Aptamer-based molecular recognition for biosensor development , 2010, Analytical and bioanalytical chemistry.

[3]  Anthony D. Keefe,et al.  Aptamers as therapeutics , 2010, Nature Reviews Drug Discovery.

[4]  Jackie Y Ying,et al.  Nanomaterials for in situ cell delivery and tissue regeneration. , 2010, Advanced drug delivery reviews.

[5]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[6]  Hisataka Kobayashi,et al.  New nanosized biocompatible MR contrast agents based on lysine-dendri-graft macromolecules. , 2010, Bioconjugate chemistry.

[7]  Ambika Bumb,et al.  Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. , 2010, Chemical reviews.

[8]  Zhuang Liu,et al.  Inorganic nanomaterials for tumor angiogenesis imaging , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  Sundara Ramaprabhu,et al.  Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. , 2010, Nanoscale.

[10]  Martin Fritts,et al.  Nanoinformatics and DNA-Based Computing: Catalyzing Nanomedicine , 2010, Pediatric Research.

[11]  Yi Lu,et al.  Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. , 2010, Advanced drug delivery reviews.

[12]  Vincent M Rotello,et al.  Gold nanoparticle-fluorophore complexes: sensitive and discerning "noses" for biosystems sensing. , 2010, Angewandte Chemie.

[13]  Yanrong Wu,et al.  DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. , 2010, Chemistry.

[14]  D. Russell,et al.  Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[15]  O.E. Rivera-Betancourt,et al.  SERS and Density Functional Theory Study of o-Dinitrobenzene on Cu Nanoparticles , 2010, IEEE Sensors Journal.

[16]  Xiaohong Fang,et al.  Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. , 2010, Accounts of chemical research.

[17]  Hua Zhang,et al.  Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. , 2010, Small.

[18]  Weihong Tan,et al.  A liposome-based nanostructure for aptamer directed delivery. , 2010, Chemical communications.

[19]  Joseph Irudayaraj,et al.  SERS aptasensor from nanorod-nanoparticle junction for protein detection. , 2010, Chemical communications.

[20]  Bertrand Lavédrine,et al.  Cover Picture: The Nature of the Extraordinary Finish of Stradivari’s Instruments (Angew. Chem. Int. Ed. 1/2010) , 2010 .

[21]  W. Tan,et al.  Engineering dendritic aptamer assemblies as superior inhibitors of protein function. , 2010, Chemistry, an Asian journal.

[22]  Fabian Kiessling,et al.  Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications , 2010 .

[23]  Weihong Tan,et al.  DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells , 2009, Proceedings of the National Academy of Sciences.

[24]  Guodong Liu,et al.  Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. , 2009, Analytical chemistry.

[25]  B. Yan,et al.  Regulation of Enzyme Activity through Interactions with Nanoparticles , 2009, International journal of molecular sciences.

[26]  Dong Chen,et al.  Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. , 2009, Colloids and surfaces. B, Biointerfaces.

[27]  Chad A Mirkin,et al.  Aptamer nano-flares for molecular detection in living cells. , 2009, Nano letters.

[28]  Zhanfang Ma,et al.  Bioconjugates of Glucose Oxidase and Gold Nanorods Based on Electrostatic Interaction with Enhanced Thermostability , 2009, Nanoscale research letters.

[29]  M. Estévez,et al.  Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. , 2009, Analytical chemistry.

[30]  Xiaodi Su,et al.  Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. , 2009, Analytical chemistry.

[31]  Jie Li,et al.  Identification of an aptamer targeting hnRNP A1 by tissue slide‐based SELEX , 2009, The Journal of pathology.

[32]  Weihong Tan,et al.  Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring , 2009 .

[33]  Weihong Tan,et al.  Mapping receptor density on live cells by using fluorescence correlation spectroscopy. , 2009, Chemistry.

[34]  Wang Zhang Surface Modification of Nanocarriers for Cancer Therapy , 2009 .

[35]  Michael J Sailor,et al.  SERS‐Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near‐Infrared Imaging and Photothermal Heating , 2009, Advanced materials.

[36]  M. Strømme,et al.  Mesoporous silica-based nanomaterials for drug delivery: evaluation of structural properties associated with release rate. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[37]  G. Bothun,et al.  Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties , 2008, Journal of nanobiotechnology.

[38]  Bin Liu,et al.  Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles , 2008, Nanotechnology.

[39]  M. Jassal,et al.  Improved dispersion of carbon nanotubes in chitosan , 2008 .

[40]  Feng Gao,et al.  Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. , 2008, Analytical chemistry.

[41]  W. Tan,et al.  Aptamer switch probe based on intramolecular displacement. , 2008, Journal of the American Chemical Society.

[42]  Ronghua Yang,et al.  Regulation of singlet oxygen generation using single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[43]  Ronghua Yang,et al.  Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. , 2008, Journal of the American Chemical Society.

[44]  T. Pradeep,et al.  One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[45]  P. Langguth,et al.  DNA Block Copolymer Micelles – A Combinatorial Tool for Cancer Nanotechnology , 2008 .

[46]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer Types of Nanoparticles Used as Drug Delivery Systems , 2022 .

[47]  Weihong Tan,et al.  Cell-specific internalization study of an aptamer from whole cell selection. , 2008, Chemistry.

[48]  Joshua E. Smith,et al.  Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. , 2008, Analytical chemistry.

[49]  T. Abdallah,et al.  Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique , 2008 .

[50]  Weihong Tan,et al.  Cancer cell targeting using multiple aptamers conjugated on nanorods. , 2008, Analytical chemistry.

[51]  C. Mirkin,et al.  Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. , 2007, Nano letters.

[52]  Sudipta Seal,et al.  Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. , 2007, Biomaterials.

[53]  Sanjiv S Gambhir,et al.  Quantum dot imaging for embryonic stem cells , 2007, BMC biotechnology.

[54]  Zhu Chang,et al.  Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. , 2007, Analytica chimica acta.

[55]  Xiongce Zhao,et al.  Simulation of adsorption of DNA on carbon nanotubes. , 2007, Journal of the American Chemical Society.

[56]  Qiang He,et al.  Assembled alginate/chitosan nanotubes for biological application. , 2007, Biomaterials.

[57]  Chih-Ching Huang,et al.  Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. , 2007, Analytical chemistry.

[58]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[59]  Jijun Tang,et al.  In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. , 2007, Biosensors & bioelectronics.

[60]  Joshua E. Smith,et al.  Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. , 2007, Analytical chemistry.

[61]  Joseph Irudayaraj,et al.  Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.

[62]  Yang Wang,et al.  Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. , 2007, Bioorganic & medicinal chemistry letters.

[63]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[64]  Takuro Niidome,et al.  PEG-modified gold nanorods with a stealth character for in vivo applications. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[65]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[66]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[67]  R. Weissleder,et al.  Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials , 2006, Molecular imaging.

[68]  Weihong Tan,et al.  Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. , 2006, Analytical chemistry.

[69]  A. Miller,et al.  Nanostructured Hydrogels for Three‐Dimensional Cell Culture Through Self‐Assembly of Fluorenylmethoxycarbonyl–Dipeptides , 2006 .

[70]  Robert A Newman,et al.  Silk-fibroin-coated liposomes for long-term and targeted drug delivery , 2006, International journal of nanomedicine.

[71]  Robert M Shelby,et al.  Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. , 2006, Nano letters.

[72]  Weihong Tan,et al.  Multicolor FRET silica nanoparticles by single wavelength excitation. , 2006, Nano letters.

[73]  R. Marchant,et al.  Surface modification of liposomes by saccharides: vesicle size and stability of lactosyl liposomes studied by photon correlation spectroscopy. , 2005, Journal of colloid and interface science.

[74]  Mathis O. Riehle,et al.  Biocompatibility: Nanomaterials for cell- and tissue engineering , 2005 .

[75]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[76]  Hongwei Liao and,et al.  Gold Nanorod Bioconjugates , 2005 .

[77]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[78]  Catherine J. Murphy,et al.  Fine-tuning the shape of gold nanorods , 2005 .

[79]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[80]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.

[81]  S. Chah,et al.  Gold nanoparticles as a colorimetric sensor for protein conformational changes. , 2005, Chemistry & biology.

[82]  Jun Fu,et al.  Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: from circle to ellipse. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[83]  Anthony D. Keefe,et al.  Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. , 2005, Chemistry & biology.

[84]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[85]  Weihong Tan,et al.  Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. , 2004, Analytical Biochemistry.

[86]  Ya‐Ping Sun,et al.  Functionalized Carbon Nanotubes with Tethered Pyrenes: Synthesis and Photophysical Properties , 2004 .

[87]  Lin He,et al.  The Distance-Dependence of Colloidal Au-Amplified Surface Plasmon Resonance , 2004 .

[88]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[89]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[90]  P. Royer,et al.  Optimization of SERS-active substrates for near-field Raman spectroscopy , 2003 .

[91]  G. Markovich,et al.  Growth of Gold Nanorods on Surfaces , 2003 .

[92]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[93]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[94]  T. Sampson,et al.  Aptamers and SELEX: the technology , 2003 .

[95]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[96]  Y. Chiang,et al.  Peptides with selective affinity for carbon nanotubes , 2003, Nature materials.

[97]  Wensheng Yang,et al.  Three-dimensional assembly of Au nanoparticles using dipeptides , 2002 .

[98]  Mostafa A. El-Sayed,et al.  Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition , 2002 .

[99]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[100]  C. Mirkin,et al.  Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. , 2002, Nucleic acids research.

[101]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[102]  T. Park,et al.  Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D,L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. , 2001, Bioconjugate chemistry.

[103]  Catherine J. Murphy,et al.  Seed‐Mediated Growth Approach for Shape‐Controlled Synthesis of Spheroidal and Rod‐like Gold Nanoparticles Using a Surfactant Template , 2001 .

[104]  Tapan K. Sau,et al.  Size Controlled Synthesis of Gold Nanoparticles using Photochemically Prepared Seed Particles , 2001 .

[105]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[106]  Stephen Mann,et al.  DNA-driven self-assembly of gold nanorods , 2001 .

[107]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[108]  R. Bellamkonda,et al.  Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. , 2000, Journal of biomedical materials research.

[109]  C. R. Chris Wang,et al.  Gold Nanorods: Electrochemical Synthesis and Optical Properties , 1997 .

[110]  A D Ellington,et al.  Aptamers as therapeutic and diagnostic reagents: problems and prospects. , 1997, Current opinion in chemical biology.

[111]  J. Szostak,et al.  A DNA aptamer that binds adenosine and ATP. , 1995, Biochemistry.

[112]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[113]  N. Janjić,et al.  Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. , 1995, Chemistry & biology.

[114]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[115]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[116]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[117]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[118]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .