Copper and tin isotopic analysis of ancient bronzes for archaeological investigation: development and validation of a suitable analytical methodology

[1]  I. Rodushkin,et al.  Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry , 2012 .

[2]  P. Degryse,et al.  Isotopic analysis : fundamentals and applications using ICP-MS , 2012 .

[3]  D. Weiss,et al.  Calibration of the New Certified Reference Materials ERM‐AE633 and ERM‐AE647 for Copper and IRMM‐3702 for Zinc Isotope Amount Ratio Determinations , 2012 .

[4]  Z. Mester,et al.  Correction of Instrumental Mass Discrimination for Isotope Ratio Determination with Multi‐Collector Inductively Coupled Plasma Mass Spectrometry , 2012 .

[5]  J. Chesley,et al.  Lead isotope analysis as a new method for identifying material culture belonging to the Vázquez de Coronado expedition , 2012 .

[6]  M. Rehkämper,et al.  A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS , 2011 .

[7]  D. Bégué,et al.  Modern mass spectrometry for studying mass-independent fractionation of heavy stable isotopes in environmental and biological sciences , 2011 .

[8]  F. Albarède,et al.  Isotopic Ag–Cu–Pb record of silver circulation through 16th–18th century Spain , 2011, Proceedings of the National Academy of Sciences.

[9]  Thilo Rehren,et al.  On the origins of extractive metallurgy: new evidence from Europe , 2010 .

[10]  E. Pernicka,et al.  Tin Isotopy–A New Method for Solving Old Questions , 2010 .

[11]  L. Yang,et al.  Laser ablation single-collector inductively coupled plasma mass spectrometry for lead isotopic analysis to investigate evolution of the Bilbilis mint. , 2010, Analytica chimica acta.

[12]  F. Vanhaecke,et al.  Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes — A review , 2010 .

[13]  Y. Lahaye,et al.  Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes , 2010 .

[14]  P. Muchez,et al.  Cu ISOTOPE RATIO VARIATIONS IN THE DIKULUSHI Cu-Ag DEPOSIT, DRC: OF PRIMARY ORIGIN OR INDUCED BY SUPERGENE REWORKING? , 2009 .

[15]  Lu Yang Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. , 2009, Mass spectrometry reviews.

[16]  M. Besse,et al.  Lead isotopes and archaeometallurgy , 2009 .

[17]  S. Brantley,et al.  Exploration potential of Cu isotope fractionation in porphyry copper deposits , 2009 .

[18]  F. Vanhaecke,et al.  Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis , 2009 .

[19]  F. Vanhaecke,et al.  Isotopic fractionation of Sn during methylation and demethylation reactions in aqueous solution. , 2009, Environmental science & technology.

[20]  Y. Lahaye,et al.  The lead and copper isotopic composition of copper ores from the Sierra Morena (Spain) , 2009 .

[21]  R. Mathur,et al.  The history of the United States cent revealed through copper isotope fractionation , 2009 .

[22]  Simon E. Jackson,et al.  The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia , 2009 .

[23]  J. Pérez-Arantegui,et al.  Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of lead isotope ratios in ancient glazed ceramics for discriminating purposes , 2008 .

[24]  K. Ikehata,et al.  In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS , 2008 .

[25]  Kathy Roler Durand,et al.  A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes , 2008 .

[26]  E. Pernicka,et al.  COINS, ARTEFACTS AND ISOTOPES— ARCHAEOMETALLURGY AND ARCHAEOMETRY * , 2008 .

[27]  M. Bar-Matthews,et al.  Fluid speciation controls of low-temperature copper isotope fractionation , 2009 .

[28]  Y. Lahaye,et al.  Roman lead mining in Germany: its origin and development through time deduced from lead isotope provenance studies , 2007 .

[29]  M. Bar-Matthews,et al.  Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel) , 2007 .

[30]  D. Borrok,et al.  Separation of Copper, Iron, and Zinc from Complex Aqueous Solutions for Isotopic Measurement , 2007 .

[31]  F. Laborda,et al.  A Simple Method for the Determination of Lead Isotope Ratios in Ancient Glazed Ceramics Using Inductively Coupled Plasma : Quadrupole Mass Spectrometry , 2007 .

[32]  Teemu Näykki,et al.  NORDTEST HANDBOOK FOR CALCULATION OF MEASUREMENT UNCERTAINTY BASED ON QUALITY CONTROL AND METHOD VALIDATION , 2007 .

[33]  G. Markl,et al.  Copper isotopes as monitors of redox processes in hydrothermal mineralization , 2006 .

[34]  Marta Fernández,et al.  Isotope dilution-thermal ionisation mass spectrometric analysis for tin in a fly ash material. , 2006, Analytica chimica acta.

[35]  I. Rodushkin,et al.  Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry , 2006 .

[36]  Barry J. Coles,et al.  Chemical Separation and Isotopic Variations of Cu and Zn From Five Geological Reference Materials , 2006 .

[37]  M. Krachler,et al.  A new HF-resistant tandem spray chamber for improved determination of trace elements and pb isotopes using inductively coupled plasma-mass spectrometry , 2005 .

[38]  A. Ritter,et al.  Old Masters' lead white pigments: investigations of paintings from the 16th to the 17th century using high precision lead isotope abundance ratios. , 2005, The Analyst.

[39]  I. Butler,et al.  Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS , 2004 .

[40]  Y. Lahaye,et al.  The early roman imperial AES coinage II: Tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius* , 2004 .

[41]  D. Vance,et al.  Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes , 2004 .

[42]  S. Russell,et al.  High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction , 2004 .

[43]  L. Ben-dor,et al.  Precise isotope ratio measurement by multicollector-ICP-MS without matrix separation , 2004 .

[44]  F. Albarède,et al.  Analytical Methods for Non-Traditional Isotopes , 2004 .

[45]  S. Russell,et al.  High-precision Cu and Zn isotope analysis by plasma source mass spectrometry: Part 2. Correcting for mass discrimination effects , 2004 .

[46]  P. De Bièvre,et al.  Atomic weights of the elements. Review 2000 (IUPAC Technical Report) , 2009 .

[47]  L. Meinert,et al.  Copper isotope ratios in magmatic and hydrothermal ore-forming environments , 2003 .

[48]  P. De Bièvre,et al.  ATOMIC WEIGHTS OF THE ELEMENTS: REVIEW 2000 , 2003 .

[49]  M. Whitehouse,et al.  Precise determination of the isotopic composition of Sn using MC-ICP-MS , 2002 .

[50]  F. Albarède,et al.  Ion-exchange fractionation of copper and zinc isotopes , 2002 .

[51]  G. Bultrini,et al.  The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database , 2001 .

[52]  E. Pernicka,et al.  Chemical composition and lead isotopy of copper and bronze from Nuragic Sardinia , 2001, European Journal of Archaeology.

[53]  N. Gale Archaeology, science-based archaeology and the Mediterranean Bronze Age metals trade: a contribution to the debate , 2001, European Journal of Archaeology.

[54]  A. M. Pollard,et al.  Handbook of archaeological sciences , 2001 .

[55]  D. Rickard,et al.  Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers , 2000 .

[56]  F. Vanhaecke,et al.  Lead isotopic and elemental analysis of copper alloy statuettes by double focusing sector field ICP mass spectrometry , 2000 .

[57]  Francis Albarède,et al.  Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry , 1999 .

[58]  N. Gale,et al.  Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry , 1999 .

[59]  A. Hauptmann,et al.  The Beginnings of Metallurgy , 1999 .

[60]  N. Gale THE ISOTOPIC COMPOSITION OF TIN IN SOME ANCIENT METALS AND THE RECYCLING PROBLEM IN METAL PROVENANCING , 1997 .

[61]  A. Halliday,et al.  Indium and tin in basalts, sulfides, and the mantle , 1995 .

[62]  N. McNaughton,et al.  Tin isotope fractionation in terrestrial cassiterites , 1991 .

[63]  W. Penrose,et al.  Fission Product tin in sediments , 1989 .

[64]  K. Rosman,et al.  The isotopic composition of tin , 1984 .

[65]  Z. Stos‐gale,et al.  Bronze Age Copper Sources in the Mediterranean: A New Approach , 1982, Science.

[66]  K. Rosman,et al.  Mass spectrometric isotope dilution analyses of tin in stony meteorites and standard rocks , 1974 .

[67]  P. M. Jeffery,et al.  Tin: its isotopic and elemental abundance☆ , 1967 .

[68]  P. M. Jeffery,et al.  The isotopic composition of terrestrial and meteoritic tin , 1965 .