Multiscale Partition of Unity

We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for ‘cheap’ parameter choices.

[1]  Axel Målqvist,et al.  Multiscale Methods for Elliptic Problems , 2011, Multiscale Model. Simul..

[2]  Antoine Gloria,et al.  Reduction of the resonance error---Part 1: Approximation of homogenized coefficients , 2011 .

[3]  Cheng Wang,et al.  Two-grid partition of unity method for second order elliptic problems , 2008 .

[4]  I. Babuska,et al.  Meshless and Generalized Finite Element Methods: A Survey of Some Major Results , 2003 .

[5]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[6]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[7]  I. Babuska,et al.  The generalized finite element method , 2001 .

[8]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[9]  M. Schweitzer Generalizations of the Finite Element Method , 2012 .

[10]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[11]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[12]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[13]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[14]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[15]  P. Henning,et al.  A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.

[16]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[17]  Daniel Peterseim,et al.  Computation of eigenvalues by numerical upscaling , 2012, Numerische Mathematik.

[18]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[19]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[20]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[21]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[22]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[23]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[24]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[25]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[26]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[27]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[28]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[29]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[30]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[31]  C. Duarte,et al.  A generalized finite element method with global-local enrichment functions for confined plasticity problems , 2012 .

[32]  Ivo Babuška,et al.  A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics , 2013 .

[33]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[34]  E Weinan,et al.  The Heterogeneous Multi-Scale Method , 2002 .

[35]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[36]  M. Holst Applications of Domain Decomposition and Partition of Unity Methods in Physics and Geometry , 2010, 1001.1364.

[37]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .