Guilbaud's 1952 theorem on the logical problem of aggregation

In a paper published in 1952, shortly after publication of Arrow's celebrated impossibility result, the French mathematicien Georges-Theodule Guilbaud has obtained a dictatorship result for the logical problem of aggregation, thus anticipating the literature on abstract aggregation theory and judgment aggregation. We reconstruct the proof of Guilbaud's theorem, which is also of technical interest, because it can be seen as the first use of ultrafilters in social choice theory.

[1]  Philippe Mongin,et al.  The premiss-based approach to judgment aggregation , 2010, J. Econ. Theory.

[2]  村上 泰亮,et al.  Logic and social Choice , 1968 .

[3]  Fred R. McMorris,et al.  Axiomatic Consensus Theory in Group Choice and Biomathematics , 2003 .

[4]  C. List,et al.  Judgment aggregation: A survey , 2009 .

[5]  Ron Holzman,et al.  Aggregation of binary evaluations , 2010, J. Econ. Theory.

[6]  J. H. Blau,et al.  Semiorders and collective choice , 1979 .

[7]  Christian List,et al.  Aggregating Sets of Judgments: Two Impossibility Results Compared1 , 2004, Synthese.

[8]  Georges-Théodule Guilbaud Les théories de l'intérêt général et le problème logique de l'agrégation , 2012 .

[9]  P. Fishburn,et al.  The Mathematics Of Preference Choice And Order Essays In Honor Of Peter C Fishburn , 2009 .

[10]  Olivier Hudry,et al.  Metric and Latticial Medians , 2009, Decision-making Process.

[11]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[12]  Bernard Monjardet,et al.  Acyclic Domains of Linear Orders: A Survey , 2006, The Mathematics of Preference, Choice and Order.

[13]  B. Monjardet,et al.  De Condorcet à Arrow via Guilbaud, Nakamura et les "jeux simples" , 2003 .

[14]  Y. Murakami Logic and Social Choice , 1968 .

[15]  Peter C. Fishburn,et al.  Arrow's impossibility theorem: Concise proof and infinite voters , 1970 .

[16]  Bengt Hansson,et al.  The existence of group preference functions , 1976 .

[17]  P. Fishburn,et al.  Algebraic aggregation theory , 1986 .

[18]  B. Monjardet,et al.  Une autre preuve du théorème d'Arrow , 1978 .

[19]  Bernard Monjardet,et al.  Social choice theory and the “Centre de Mathématique Sociale”: some historical notes , 2005, Soc. Choice Welf..

[20]  Christian List,et al.  Introduction to Judgment Aggregation , 2010 .

[21]  Dieter Sondermann,et al.  Arrow's theorem, many agents, and invisible dictators☆ , 1972 .

[22]  Walburga Rödding,et al.  On the aggregation of preferences , 1978 .

[23]  J. Niehans Multiple discoveries in economic theory , 1995 .

[24]  Robert B. Wilson On the theory of aggregation , 1975 .

[25]  Victor Reiner,et al.  Acyclic sets of linear orders via the Bruhat orders , 2008, Soc. Choice Welf..

[26]  Eric Pacuit,et al.  A General Approach to Aggregation Problems , 2009, J. Log. Comput..

[27]  Christian List,et al.  Introduction to Judgment Aggregation , 2010, J. Econ. Theory.

[28]  Peter C. Fishburn,et al.  Probabilities of election outcomes for large electorates , 1978 .

[29]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[30]  Lawrence G. Sager,et al.  Unpacking the Court , 1986 .

[31]  Christian Klamler,et al.  A simple ultrafilter proof for an impossibility theorem in judgment aggregation , 2009 .

[32]  Frederik Herzberg,et al.  Judgement aggregation functions and ultraproducts , 2008 .

[33]  Bernard Monjardet On the use of ultrafilters in social choice theory , 1983 .

[34]  Christian List,et al.  Majority voting on restricted domains , 2010, J. Econ. Theory.