Planar Hall Effect in Antiferromagnetic MnTe Thin Films.

We show that the spin-orbit coupling (SOC) in α-MnTe impacts the transport behavior by generating an anisotropic valence-band splitting, resulting in four spin-polarized pockets near Γ. A minimal k·p model is constructed to capture this splitting by group theory analysis, a tight-binding model, and ab initio calculations. The model is shown to describe the rotation symmetry of the zero-field planer Hall effect (PHE). The PHE originates from the band anisotropy given by SOC, and is quantitatively estimated to be 25%-31% for an ideal thin film with a single antiferromagnetic domain.

[1]  Wei Zhang,et al.  Perspectives of antiferromagnetic spintronics , 2018 .

[2]  H. Ohno,et al.  Spin transport and spin torque in antiferromagnetic devices , 2018 .

[3]  C. Felser,et al.  The multiple directions of antiferromagnetic spintronics , 2018 .

[4]  J. Wunderlich,et al.  Magnetic anisotropy in antiferromagnetic hexagonal MnTe , 2017, 1710.08523.

[5]  Wenshuai Gao,et al.  Probing the chiral anomaly by planar Hall effect in Dirac semimetal Cd3As2 nanoplates , 2017, Physical Review B.

[6]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[7]  S. Tewari,et al.  Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals. , 2017, Physical review letters.

[8]  A. Burkov Giant planar Hall effect in topological metals , 2017, 1704.05467.

[9]  J. Sinova,et al.  Concepts of antiferromagnetic spintronics , 2017, 1701.06556.

[10]  T. Jungwirth,et al.  Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs. , 2016, Physical review letters.

[11]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[12]  Zhongshui Ma,et al.  Role of band-index-dependent transport relaxation times in anomalous Hall effect , 2016, 1602.01360.

[13]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[14]  T. Jungwirth,et al.  Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.

[15]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[16]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[17]  V. Loktev,et al.  Spintronics of antiferromagnetic systems (Review Article) , 2014 .

[18]  F. Bechstedt,et al.  Structural and Magnetic Properties of MnTe Phases from Ab Initio Calculations , 2012, Journal of Superconductivity and Novel Magnetism.

[19]  G. Koster Space Groups and Their Representations , 2012 .

[20]  J. Sinova,et al.  Semiclassical framework for the calculation of transport anisotropies , 2008, 0810.5693.

[21]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[22]  B. Hennion,et al.  Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering , 2006 .

[23]  S. K. Paranjpe,et al.  Low-temperature neutron diffraction study of MnTe , 2004, cond-mat/0408124.

[24]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[25]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[26]  S. D. Ganichev,et al.  Spin-galvanic effect , 2002, Nature.

[27]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[28]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[31]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[32]  Wei,et al.  Total-energy and band-structure calculations for the semimagnetic Cd1-xMnxTe semiconductor alloy and its binary constituents. , 1987, Physical review. B, Condensed matter.

[33]  J. Oleszkiewicz,et al.  Electronic structure of antiferromagnetic MnTe , 1983 .

[34]  L. Sandratskii,et al.  Energy Band Structure and Electronic Properties of NiAs Type Compounds. II. Antiferromagnetic Manganese Telluride , 1981 .

[35]  T. Mcguire,et al.  Anisotropic magnetoresistance in ferromagnetic 3d alloys , 1975 .

[36]  A. Fert,et al.  The spontaneous resistivity anisotropy in Ni-based alloys , 1970 .

[37]  K. Walther Ultrasonic relaxation at the Néel temperature and nuclear acoustic resonance in MnTe , 1967 .

[38]  S. Greenwald The antiferromagnetic structure deformations in CoO and MnTe , 1953 .

[39]  J. Smit,et al.  Magnetoresistance of ferromagnetic metals and alloys at low temperatures , 1951 .

[40]  Paolo Ruggerone,et al.  Computational Materials Science X , 2002 .

[41]  J. Wasscher Electrical transport phenomena in MnTe, an antiferromagnetic semiconductor , 1969 .

[42]  William Thomson,et al.  On the Electro-Dynamic Qualities of Metals:--Effects of Magnetization on the Electric Conductivity of Nickel and of Iron , 1856 .