Kondo QED: The Kondo effect and photon trapping in a two-impurity Anderson model ultrastrongly coupled to light

The Kondo effect is one of the most studied examples of strongly correlated quantum many-body physics. Another type of strongly correlated physics that has only recently been explored in detail (and become experimentally accessible) is that of ultrastrong coupling between light and matter. Here, we study a system which we denote as"Kondo QED") that combines both phenomena, consisting of a two-impurity Anderson model ultra-strongly coupled to a single-mode cavity. While presented as an abstract model, it is relevant for a range of future hybrid cavity-QED systems. Using the hierarchical equations of motion approach we show that the ultrastrong coupling of cavity photons to the electronic states (impurity) noticeably suppresses the electronic Kondo resonance due to the destruction of many-body correlations of the Kondo cloud. We observe this transfer of correlations from the Kondo cloud to the cavity by computing the entropy and mutual information of the impurity-cavity subsystems. In addition, in the weak lead-coupling limit and at zero-bias, the model exhibits a ground-state photon accumulation effect originating entirely from counter-rotating terms in the impurity-cavity interaction. Interestingly, in the strong lead-coupling limit, this accumulation is ``Kondo-enhanced'' by new transition paths opening when increasing the hybridization to the leads. This suggests a new mechanism for the generation of real photons from virtual states. We further show that the suppression of the Kondo effect is stable under broadening of the cavity resonance as a consequence of the interaction to an external bosonic continuum. Our findings pave the way for the simultaneous control of both the Kondo QED effect and a photon accumulation effect using the ultrastrong coupling of light and matter.

[1]  F. Nori,et al.  An efficient Julia framework for hierarchical equations of motion in open quantum systems , 2023, Communications Physics.

[2]  M. Cirio,et al.  Quantum-Classical Decomposition of Gaussian Quantum Environments: A Stochastic Pseudomode Model , 2023, PRX Quantum.

[3]  M. Richter,et al.  Hierarchical equations of motion analog for systems with delay: Application to intercavity photon propagation , 2023, Physical Review B.

[4]  D. Segal,et al.  Effective-Hamiltonian Theory of Open Quantum Systems at Strong Coupling , 2022, PRX Quantum.

[5]  K. Funo,et al.  Pseudofermion method for the exact description of fermionic environments: From single-molecule electronics to the Kondo resonance , 2022, Physical Review Research.

[6]  J. Bloch,et al.  Strongly correlated electron–photon systems , 2022, Nature.

[7]  Y. Tanimura,et al.  Numerically "exact" simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. , 2022, The Journal of chemical physics.

[8]  M. Thoss,et al.  Nonadiabatic vibronic effects in single-molecule junctions: A theoretical study using the hierarchical equations of motion approach , 2022, Physical Review B.

[9]  D. Segal,et al.  Strong system-bath coupling effects in quantum absorption refrigerators. , 2022, Physical review. E.

[10]  H. Beere,et al.  Electrically Controllable Kondo Correlation in Spin-Orbit-Coupled Quantum Point Contacts. , 2022, Physical review letters.

[11]  A. Daley,et al.  Non-Markovian Quantum Dynamics in Strongly Coupled Multimode Cavities Conditioned on Continuous Measurement , 2021, PRX Quantum.

[12]  F. Nori,et al.  Canonical derivation of the fermionic influence superoperator , 2021, Physical Review B.

[13]  T. Ebbesen,et al.  Manipulating matter by strong coupling to vacuum fields , 2021, Science.

[14]  Á. Rubio,et al.  Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity , 2021, Nature communications.

[15]  M. Thoss,et al.  Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach , 2021, Physical Review B.

[16]  F. Nori,et al.  QuTiP-BoFiN: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics , 2020, Physical Review Research.

[17]  S. Ashhab,et al.  Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime , 2020, Scientific Reports.

[18]  C. Ciuti,et al.  Non-adiabatic stripping of a cavity field from electrons in the deep-strong coupling regime , 2020, Nature Photonics.

[19]  Y. Tanimura Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). , 2020, The Journal of chemical physics.

[20]  A. Poddubny,et al.  Waveguide Quantum Optomechanics: Parity-Time Phase Transitions in Ultrastrong Coupling Regime. , 2020, Physical review letters.

[21]  Á. Rubio,et al.  Free electron gas in cavity quantum electrodynamics , 2020, Physical Review Research.

[22]  F. Nori,et al.  Gauge invariance of the Dicke and Hopfield models , 2020, Physical Review A.

[23]  Frank Pollmann,et al.  Simulating quantum many-body dynamics on a current digital quantum computer , 2019, npj Quantum Information.

[24]  S. Coppersmith,et al.  Enhancing the dipolar coupling of a S-T0 qubit with a transverse sweet spot , 2019, Nature Communications.

[25]  F. Nori,et al.  Collectively induced exceptional points of quantum emitters coupled to nanoparticle surface plasmons , 2019, Physical Review A.

[26]  J. Bravo-Abad,et al.  Tunable and Robust Long-Range Coherent Interactions between Quantum Emitters Mediated by Weyl Bound States. , 2019, Physical review letters.

[27]  F. Nori,et al.  Modelling the ultra-strongly coupled spin-boson model with unphysical modes , 2019, Nature Communications.

[28]  F. Nori,et al.  Multielectron Ground State Electroluminescence. , 2018, Physical review letters.

[29]  L. Martín-Moreno,et al.  Single Photons by Quenching the Vacuum. , 2018, Physical review letters.

[30]  F. Nori,et al.  Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics , 2018, Nature Physics.

[31]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[32]  Werner Wegscheider,et al.  Microwave Photon-Mediated Interactions between Semiconductor Qubits , 2018, Physical Review X.

[33]  P. Rabl,et al.  Breakdown of gauge invariance in ultrastrong-coupling cavity QED , 2018, Physical Review A.

[34]  C. Ciuti,et al.  Vacuum-dressed cavity magnetotransport of a two-dimensional electron gas , 2018, Physical Review B.

[35]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[36]  V. Scarani,et al.  Refrigeration beyond weak internal coupling. , 2018, Physical review. E.

[37]  G. Guo,et al.  Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots , 2018 .

[38]  N. Roch,et al.  A tunable Josephson platform to explore many-body quantum optics in circuit-QED , 2018, npj Quantum Information.

[39]  J. Schachenmayer,et al.  Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics , 2018, 1801.09876.

[40]  F. Nori,et al.  Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED , 2017, 1712.02077.

[41]  R. Ribeiro,et al.  Can ultrastrong coupling change ground state chemical reactions , 2017, 1705.10655.

[42]  T. Kontos,et al.  Observation of the frozen charge of a Kondo resonance , 2017, Nature.

[43]  F. Nori,et al.  Long-lasting quantum memories: Extending the coherence time of superconducting artificial atoms in the ultrastrong-coupling regime , 2017, 1703.08951.

[44]  Franco Nori,et al.  Circuit quantum acoustodynamics with surface acoustic waves , 2017, Nature Communications.

[45]  J. Schachenmayer,et al.  Cavity-Enhanced Transport of Charge. , 2017, Physical review letters.

[46]  Qiang Shi,et al.  Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator , 2017 .

[47]  F. Nori,et al.  Deterministic quantum nonlinear optics with single atoms and virtual photons , 2017, 1701.05038.

[48]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[49]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[50]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[51]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[52]  Y. Tanimura,et al.  Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. , 2016, The Journal of chemical physics.

[53]  M. Thoss,et al.  Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems , 2016, 1609.05149.

[54]  S. De Liberato Virtual photons in the ground state of a dissipative system , 2016, Nature Communications.

[55]  W. A. Coish,et al.  Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings , 2016, Nanotechnology.

[56]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[57]  T. Kontos,et al.  Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua , 2016, 1605.04732.

[58]  Franco Nori,et al.  One Photon Can Simultaneously Excite Two or More Atoms. , 2016, Physical review letters.

[59]  J. Cirac,et al.  Bound States in Boson Impurity Models , 2015, 1512.07238.

[60]  F. Spano,et al.  Cavity-Controlled Chemistry in Molecular Ensembles. , 2015, Physical review letters.

[61]  Jake Iles-Smith,et al.  Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations. , 2015, The Journal of chemical physics.

[62]  K. L. Hur Condensed-matter physics: Quantum dots and the Kondo effect , 2015, Nature.

[63]  G. Guo,et al.  Kondo induced π -phase shift of microwave photons in a circuit quantum electrodynamics architecture , 2015, Physical Review B.

[64]  F. Nori,et al.  Ground State Electroluminescence. , 2015, Physical review letters.

[65]  Yijing Yan,et al.  Local temperatures of strongly-correlated quantum dots out of equilibrium , 2015, 1503.05653.

[66]  T. Kontos,et al.  On the electron-photon coupling in Mesoscopic Quantum Electrodynamics , 2015, 1501.00803.

[67]  M. Ternes,et al.  Exploring the phase diagram of the two-impurity Kondo problem , 2014, Nature Communications.

[68]  S. Maier,et al.  Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode , 2014 .

[69]  A. F. Kockum,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[70]  H. Shtrikman,et al.  Emergent SU(4) Kondo physics in a spin–charge-entangled double quantum dot , 2013, Nature Physics.

[71]  Neill Lambert,et al.  Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems , 2013, 1311.0016.

[72]  T. Kontos,et al.  Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture , 2013, 1310.4363.

[73]  Andrey K. Sarychev,et al.  Quantum plasmonics , 2013, Nature Physics.

[74]  Xiao Zheng,et al.  Kondo memory in driven strongly correlated quantum dots. , 2013, Physical review letters.

[75]  M R Delbecq,et al.  Photon-mediated interaction between distant quantum dot circuits , 2013, Nature Communications.

[76]  M. Hartmann,et al.  Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime. , 2012, Physical review letters.

[77]  Yijing Yan,et al.  Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. , 2012, Physical review letters.

[78]  A. Gorshkov,et al.  Dissipative many-body quantum optics in Rydberg media. , 2012, Physical review letters.

[79]  T. Nakajima,et al.  Vacuum Rabi splitting in a semiconductor circuit QED system. , 2012, Physical review letters.

[80]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[81]  Mattias Beck,et al.  Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells. , 2011, Physical review letters.

[82]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[83]  M R Delbecq,et al.  Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. , 2011, Physical review letters.

[84]  J. Gambetta,et al.  Dissipation and ultrastrong coupling in circuit QED , 2011, 1107.3990.

[85]  Jie Hu,et al.  Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems. , 2011, The Journal of chemical physics.

[86]  C. Ciuti,et al.  Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED. , 2011, Physical review letters.

[87]  C. Kreisbeck,et al.  High-Performance Solution of Hierarchical Equations of Motion for Studying Energy Transfer in Light-Harvesting Complexes. , 2010, Journal of chemical theory and computation.

[88]  Jie Hu,et al.  Communication: Padé spectrum decomposition of Fermi function and Bose function. , 2010, The Journal of chemical physics.

[89]  D. Natelson,et al.  Kondo resonances in molecular devices. , 2010, ACS nano.

[90]  Nicolas Roch,et al.  Observation of the underscreened Kondo effect in a molecular transistor. , 2009, Physical review letters.

[91]  Qiang Shi,et al.  Efficient hierarchical Liouville space propagator to quantum dissipative dynamics. , 2009, The Journal of chemical physics.

[92]  Yijing Yan,et al.  Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. , 2007, The Journal of chemical physics.

[93]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[94]  M. Katsnelson,et al.  Surface electronic structure of Cr(001): Experiment and theory , 2005 .

[95]  J. Ciszek,et al.  Inelastic electron tunneling via molecular vibrations in single-molecule transistors. , 2004, Physical review letters.

[96]  N. Wingreen Quantum Many-Body Effects in a Single-Electron Transistor , 2004, Science.

[97]  L. Glazman,et al.  Kondo effect in quantum dots , 2004, cond-mat/0401517.

[98]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[99]  T. Brandes,et al.  Steering of a bosonic mode with a double quantum dot , 2003, cond-mat/0302265.

[100]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[101]  D. Sprinzak,et al.  Charge distribution in a Kondo-correlated quantum dot. , 2001, Physical review letters.

[102]  M. Melloch,et al.  The Kondo Effect in an Artificial Quantum Dot Molecule , 2001, Science.

[103]  D. Mahalu,et al.  Controlled dephasing of a quantum dot in the Kondo regime. , 2001, Physical review letters.

[104]  D. E. Logan,et al.  On the scaling spectrum of the Anderson impurity model , 2001, cond-mat/0110056.

[105]  L. Glazman,et al.  Revival of the Kondo effect , 2001, cond-mat/0104100.

[106]  V. May,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[107]  London,et al.  Numerical renormalization group calculations for the self-energy of the impurity Anderson model , 1998, cond-mat/9804224.

[108]  K. Yamada Perturbation Expansion for the Anderson Hamiltonian. II , 1975 .

[109]  J. M. Luttinger Analytic Properties of Single-Particle Propagators for Many-Fermion Systems , 1961 .

[110]  David Abend,et al.  The Kondo Problem To Heavy Fermions , 2016 .

[111]  Henrik Bruus,et al.  Many-body quantum theory in condensed matter physics - an introduction , 2004 .

[112]  C E TENREIRO,et al.  Refrigeration , 1937, Thermoelectric Energy Conversion Devices and Systems.