Interfacial oxygen under TiO2 supported Au clusters revealed by a genetic algorithm search.

We present a density functional theory study of the oxidation of 1D periodic rods supported along the [001] direction on the rutile TiO2(110) surface. The study shows evidence for an oxidation of the interface between the supported Au and the TiO2 crystal. The added O atoms adsorb at the 5f-Ti atoms in the through under the Au rod and are stabilized by charge transfer from the nearest Au atoms. Despite an extensive search, we find no low energy barrier pathways for CO oxidation involving CO adsorbed on Au and O at the perimeter of the Au/TiO2 interface. This is in part attributed the weak adsorption of CO on cationic Au at the perimeter.

[1]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  B. Hammer,et al.  2D-3D transition for cationic and anionic gold clusters: a kinetic energy density functional study. , 2009, Journal of the American Chemical Society.

[3]  R. Behm,et al.  Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. , 2011, Angewandte Chemie.

[4]  F. Besenbacher,et al.  Charge state of gold nanoparticles supported on titania under oxygen pressure. , 2011, Angewandte Chemie.

[5]  B. Gates,et al.  Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. , 2004, Journal of the American Chemical Society.

[6]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[7]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[8]  Matthew Neurock,et al.  Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst , 2011, Science.

[9]  D. Matthey,et al.  Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) , 2007, Science.

[10]  B. Gates,et al.  Role of cationic gold in supported CO oxidation catalysts , 2007 .

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  R. Rousseau,et al.  The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. , 2013, Journal of the American Chemical Society.

[13]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[14]  U. Landman,et al.  Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime , 2007 .

[15]  B. D. Kay,et al.  Intrinsic diffusion of hydrogen on rutile TiO2(110). , 2008, Journal of the American Chemical Society.

[16]  Bjørk Hammer,et al.  Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory. , 2012, Physical review letters.

[17]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[18]  V. Dravid,et al.  Direct evidence of oxidized gold on supported gold catalysts. , 2005, The journal of physical chemistry. B.

[19]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[20]  D. Marx,et al.  Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO2 interface. , 2013, Angewandte Chemie.

[21]  Krista S. Walton,et al.  Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. , 2012, Journal of the American Chemical Society.

[22]  H. Metiu,et al.  Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. , 2007, The Journal of chemical physics.

[23]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[24]  A. Fortunelli,et al.  Surface-supported gold cages. , 2009, Physical Review Letters.

[25]  G. A. Lager,et al.  Polyhedral thermal expansion in the TiO 2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature , 1979 .

[26]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[27]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[28]  P. Hu,et al.  Insight into why the Langmuir–Hinshelwood mechanism is generally preferred , 2002 .

[29]  Ali Alavi,et al.  Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. , 2002, Journal of the American Chemical Society.

[30]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[31]  A. Kiejna,et al.  First-principles study of Au nanostructures on rutile TiO 2 ( 110 ) , 2009 .

[32]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[33]  S. Linic,et al.  Geometric and electronic characteristics of active sites on TiO2-supported Au nano-catalysts: insights from first principles. , 2009, Physical chemistry chemical physics : PCCP.

[34]  Y. D. Kim,et al.  Size-selectivity in the oxidation behaviors of au nanoparticles. , 2006, Angewandte Chemie.

[35]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[36]  B. Hammer,et al.  Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO(2)(110). , 2009, The Journal of chemical physics.

[37]  Hans-Joachim Freund,et al.  Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces , 2001 .

[38]  K. Honkala,et al.  Formation of gold(I) edge oxide at flat gold nanoclusters on an ultrathin MgO film under ambient conditions. , 2010, Angewandte Chemie.

[39]  B. Cuenya Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects , 2010 .

[40]  B. Hammer,et al.  Self-consistent meta-generalized gradient approximation study of adsorption of aromatic molecules on noble metal surfaces. , 2011, The Journal of chemical physics.

[41]  B. Hammer,et al.  The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania , 2008, Science.

[42]  O. Lopez-Acevedo,et al.  Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. , 2010, Nature chemistry.

[43]  Donna A. Chen,et al.  Enhanced activity for supported Au clusters: Methanol oxidation on Au/TiO2(110) , 2012 .

[44]  J. Yates,et al.  Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. , 2012, Journal of the American Chemical Society.

[45]  T. Akita,et al.  Intrinsic catalytic structure of gold nanoparticles supported on TiO2. , 2012, Angewandte Chemie.

[46]  L. Ono,et al.  Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects , 2008 .

[47]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[48]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[49]  B. Hammer,et al.  Steps on rutile TiO 2 (110): Active sites for water and methanol dissociation , 2011, 1111.0428.