A hierarchy of sources of errors influencing the quality of identification of unknown parameters using a meta-heuristic algorithm

Abstract The aim of structural monitoring is to get mechanical and valuable information concerning structural parameters. A generic frame was developed in order to identify unknown parameters thanks to an iterative process using a meta-heuristic algorithm. It combines data obtained through structural monitoring, a mechanical model and an optimization algorithm. The quality of identification depends on the quality of the data set, on that of the mechanical model and on the algorithm efficiency. It is shown through several tests on two case studies how uncertainty or errors arising from various sources can impact the accuracy of predicted values.

[1]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[2]  Marc Boulon,et al.  Soil parameter identification using a genetic algorithm , 2008 .

[3]  Charles Elegbede,et al.  Structural reliability assessment based on particles swarm optimization , 2005 .

[4]  Denys Breysse,et al.  Soil-structure interaction: Parameters identification using particle swarm optimization , 2010 .

[5]  Chung Bang Yun,et al.  Substructural identification for damage estimation of structures , 1997 .

[6]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[7]  Patrick Siarry,et al.  A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem , 2010, Eng. Appl. Artif. Intell..

[8]  Yung-ming Cheng,et al.  Performance studies on six heuristic global optimization methods in the location of critical slip surface , 2007 .

[9]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[10]  Julien Baroth,et al.  Probabilistic analysis of the inverse analysis of an excavation problem , 2010 .

[11]  Amadou Ndiaye,et al.  Multi-objective preliminary ecodesign , 2009 .

[12]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[13]  Jan Holnicki-Szulc,et al.  Modelling and identification of delamination in double-layer beams by the virtual distortion method , 2008 .

[14]  Q. H. Wu,et al.  A heuristic particle swarm optimizer for optimization of pin connected structures , 2007 .

[15]  Daniel Straub,et al.  Risk based inspection planning for structural systems , 2005 .

[16]  Shunde Yin,et al.  Geomechanical parameters identification by particle swarm optimization and support vector machine , 2009 .

[17]  Dan M. Frangopol,et al.  Structural Health Monitoring and Reliability Estimation: Long Span Truss Bridge Application With Environmental Monitoring Data , 2008 .

[18]  Ian F. C. Smith,et al.  Model Identification of Bridges Using Measurement Data , 2005 .

[19]  Dan M. Frangopol,et al.  Optimization of bridge maintenance strategies based on structural health monitoring information , 2011 .

[20]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[21]  Roberto Cigolini,et al.  Recent advances in maintenance and infrastructure management , 2009 .

[22]  Charles E. Augarde,et al.  Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization , 2009 .

[23]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[24]  Alessandro Corsini,et al.  Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling , 2008 .

[25]  Patrick Castéra,et al.  Diagnosis and monitoring of timber buildings of cultural heritage , 2007 .

[26]  Joel P. Conte,et al.  Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table , 2010 .