Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region

Abstract Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3–5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ∼675 K and pressures of ∼10 atm.

[1]  Igor V. Ptashnik,et al.  The Water Vapour Continuum: Brief History and Recent Developments , 2012, Surveys in Geophysics.

[2]  Olga B. Rodimova,et al.  Role of diffusion in the violation of the long‐wave approximation in line wings , 2012 .

[3]  K. O. White,et al.  Pressure dependence of the water vapor continuum absorption in the 3.5-4.0-microm region. , 1979, Applied optics.

[4]  R. Tipping,et al.  A far wing line shape theory and its application to the water vibrational bands (II) , 1992 .

[5]  Jean-Michel Hartmann,et al.  The infrared continuum of pure water vapor: Calculations and high-temperature measurements , 1993 .

[6]  H. Kjaergaard,et al.  Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer , 2003 .

[7]  H. Rubens,et al.  Beobachtungen über Absorption und Emission von Wasserdampf und Kohlensäure im ultrarothen Spectrum , 2022 .

[8]  C. Leforestier,et al.  Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. , 2008, The Journal of chemical physics.

[9]  O. B. Rodimova,et al.  Spectral line shape. I. Kinetic equation for arbitrary frequency detunings , 1995 .

[10]  I. V. Ptashnik,et al.  Evidence for the contribution of water dimers to the near-IR water vapour self-continuum , 2008 .

[11]  O. B. Rodimova,et al.  Line shape in far wings and water vapor absorption in a broad temperature interval , 2010 .

[12]  A. A. Vigasin,et al.  Bimolecular Absorption in Atmospheric Gases , 2003 .

[13]  R. L. Alt,et al.  Continuum Absorption by H2O in the 700-1200 cm(-1) and 2400-2800 cm(-1) Windows, , 1984 .

[14]  A. Vigasin Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. , 2000 .

[15]  I. V. Ptashnik,et al.  Water vapour self-continuum and water dimers: 1. Analysis of recent work , 2011 .

[16]  W. J. Lafferty,et al.  The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  D. E. Burch,et al.  Continuum Absorption by H2O. , 1982 .

[18]  Yu. I. Baranov,et al.  The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311 to 363 K , 2011 .

[19]  I. V. Ptashnik,et al.  Water vapor self‐continuum absorption in near‐infrared windows derived from laboratory measurements , 2011 .

[20]  W B Grant,et al.  Water vapor absorption coefficients in the 8-13-microm spectral region: a critical review. , 1990, Applied optics.

[21]  Walter J. Lafferty,et al.  Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K , 2008 .