NL2+ Systems as New-Generation Phase-Transfer Catalysts.

Phase-transfer catalysts (PTCs), currently, are one of the most important tools of chemists for performing organic reactions. PTCs accelerate several types of reactions in biphasic systems, giving excellent yields of the desired product. Most of the PTCs belong to the general formula NR4+X-. In the recent past, several compounds possessing a novel scaffold with the general formula NL2+X- have been reported as PTCs. In the NL2+ species, a nitrogen atom with a formal positive charge accepts electron density from electron-donating ligands. Electronic structure studies reported in the literature confirmed the possibility of L → N coordination (donor-acceptor) interactions in these species, and thus, this class of compounds are known as divalent NI compounds. These species are reported to exhibit better catalytic potential in comparison to the traditional NR4+ systems. Some of the NL2+ systems are found to be useful in asymmetric phase-transfer catalysis. Thus, these systems offer extensive opportunities for exploring the catalytic properties and novel mechanistic aspects associated with their unique electronic structure. In this paper, the synthesis, electronic, and structural properties and the applications in catalysis of the NL2+-based PTCs are reviewed with their bright future scope in catalytic organic chemistry.

[1]  S. Mandal,et al.  Can Remote N-Heterocyclic Carbenes Coordinate with Main Group Elements? Synthesis, Structure, and Quantum Chemical Analysis of N+ -Centered Complexes. , 2018, Chemistry.

[2]  P. Bharatam,et al.  C → N coordination bonds in (CCC) → N+ ← (L) complexes , 2018, Theoretical Chemistry Accounts.

[3]  Choon‐Hong Tan,et al.  Phase-Transfer and Ion-Pairing Catalysis of Pentanidiums and Bisguanidiniums. , 2017, Accounts of chemical research.

[4]  C. Kee,et al.  Pentanidium-Catalyzed Asymmetric Phase-Transfer Conjugate Addition: Prediction of Stereoselectivity via DFT Calculations and Docking Sampling of Transition States, and Origin of Stereoselectivity , 2016 .

[5]  P. Bharatam,et al.  Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study , 2016, Journal of Chemical Sciences.

[6]  Choon‐Hong Tan,et al.  Pentanidium- and Bisguanidinium-Catalyzed Enantioselective Alkylations Using Silylamide as Brønsted Probase. , 2016, Journal of the American Chemical Society.

[7]  S. Shirakawa,et al.  A new generation of chiral phase-transfer catalysts. , 2016, Organic & biomolecular chemistry.

[8]  G. Bertrand,et al.  Synthesis of a Carbodicyclopropenylidene: A Carbodicarbene based Solely on Carbon. , 2016, Angewandte Chemie.

[9]  Gernot Frenking,et al.  Donor-acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C-Sn. , 2016, Chemical Society reviews.

[10]  D. Albanese,et al.  Sustainable Oxidations under Phase-Transfer Catalysis Conditions , 2016 .

[11]  S. Shirakawa,et al.  Chiral quaternary phosphonium salts as phase-transfer catalysts for environmentally benign asymmetric transformations , 2016 .

[12]  Vijay Gupta,et al.  Design, Synthesis, and Structural Analysis of Divalent N(I) Compounds and Identification of a New Electron-Donating Ligand. , 2016, Chemistry.

[13]  Jiajing Tan,et al.  Contemporary Asymmetric Phase Transfer Catalysis: Large-Scale Industrial Applications , 2015 .

[14]  Abdelaziz Nait Ajjou Aqueous-Phase Catalytic Oxidation, Transfer Hydrogenation, Reductive Amination and Hydration Reactions , 2015 .

[15]  S. Dinda,et al.  Development of ketonic resin by polymerization reaction: A critical review , 2015 .

[16]  Choon‐Hong Tan,et al.  Catalytic enantioselective alkylation of sulfenate anions to chiral heterocyclic sulfoxides using halogenated pentanidium salts. , 2014, Angewandte Chemie.

[17]  A. Schnepf,et al.  Dative or not dative? , 2014, Angewandte Chemie.

[18]  G. Frenking Dative bonds in main-group compounds: a case for more arrows! , 2014, Angewandte Chemie.

[19]  G. Keglevich,et al.  Catalytic asymmetric Darzens reactions , 2014 .

[20]  T. Stamatatos,et al.  A class of phase-transfer catalyst with interionic strain: insight into the bonding of disubstituted N- vs carbene-stabilized N(I)-centered cations. , 2014, Organic letters.

[21]  P. Bharatam,et al.  Possibility of the existence of donor-acceptor interactions in bis(azole)amines: an electronic structure analysis. , 2014, The Journal of organic chemistry.

[22]  Lee Belding,et al.  A coordination compound of Ge(0) stabilized by a diiminopyridine ligand. , 2014, Angewandte Chemie.

[23]  A. Schnepf,et al.  Dative bonds in main-group compounds: a case for fewer arrows! , 2014, Angewandte Chemie.

[24]  A. Gaumont,et al.  Chiral non-racemic sulfoxides by asymmetric alkylation of alkanesulfenates in the presence of a chiral ammonium phase-transfer catalyst derived from Cinchona alkaloid , 2013 .

[25]  D. Stalke,et al.  Acyclic germylones: congeners of allenes with a central germanium atom. , 2013, Journal of the American Chemical Society.

[26]  J. Epping,et al.  A cyclic silylone ("siladicarbene") with an electron-rich silicon(0) atom. , 2013, Angewandte Chemie.

[27]  Prasad V. Bharatam,et al.  Existence of dynamic tautomerism and divalent N(I) character in N‐(pyridin‐2‐yl)thiazol‐2‐amine , 2013, J. Comput. Chem..

[28]  S. Ramasastry,et al.  Cinchona Alkaloid-Catalyzed Stereoselective Carbon-Carbon Bond Forming Reactions , 2013 .

[29]  K. Maruoka,et al.  Recent developments in asymmetric phase-transfer reactions. , 2013, Angewandte Chemie.

[30]  K. Gratzer,et al.  Application Scope and Limitations of TADDOL-Derived Chiral Ammonium Salt Phase-Transfer Catalysts , 2013, Molecules.

[31]  M. Driess,et al.  A cyclic germadicarbene ("germylone") from germyliumylidene. , 2013, Journal of the American Chemical Society.

[32]  C. Farés,et al.  Synthesis and structure of carbene-stabilized N-centered cations [L2N]+, [L2NR]2+, [LNR3]2+ , and [L3N]3+. , 2013, Chemistry.

[33]  G. Frenking,et al.  A stable singlet biradicaloid siladicarbene: (L:)2Si. , 2013, Angewandte Chemie.

[34]  G. Frenking,et al.  Dinitrogen as double Lewis acid: structure and bonding of triphenylphosphinazine N2(PPh3)2. , 2013, Angewandte Chemie.

[35]  Robert J. Gilliard,et al.  Oxidation of carbene-stabilized diarsenic: diarsene dications and diarsenic radical cations. , 2013, Journal of the American Chemical Society.

[36]  Johanna Novacek,et al.  Bifunctional Chiral Quaternary Ammonium Salt Catalysts: A Rapidly Emerging Class of Powerful Asymmetric Catalysts , 2013 .

[37]  K. Gratzer,et al.  Investigations Concerning the Syntheses of TADDOL-Derived Secondary Amines and Their Use To Access Novel Chiral Organocatalysts. , 2012, Synthesis.

[38]  Dhilon S. Patel,et al.  Divalent N(I) character in 2-(thiazol-2-yl)guanidine: an electronic structure analysis. , 2012, The journal of physical chemistry. A.

[39]  Choon‐Hong Tan,et al.  Pentanidium-catalyzed enantioselective α-hydroxylation of oxindoles using molecular oxygen. , 2012, Organic letters.

[40]  David J. D. Wilson,et al.  Are N-heterocyclic carbenes "better" ligands than phosphines in main group chemistry? A theoretical case study of ligand-stabilized E2 molecules, L-E-E-L (L = NHC, phosphine; E = C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi). , 2012, Inorganic chemistry.

[41]  Gernot Frenking,et al.  Borylene complexes (BH)L2 and nitrogen cation complexes (N+)L2: isoelectronic homologues of carbones CL2. , 2012, Chemistry.

[42]  G. P. Howell,et al.  Asymmetric and Diastereoselective Conjugate Addition Reactions: C–C Bond Formation at Large Scale , 2012 .

[43]  G. Frenking,et al.  Carbodiphosphorane analogues E(PPh3)2 with E=C-Pb: a theoretical study with implications for ligand design. , 2012, Chemistry.

[44]  Y. Zhang,et al.  Recent advances in organocatalytic asymmetric Michael reactions , 2012 .

[45]  Ralf Tonner,et al.  Carbodicarbenes—divalent carbon(0) compounds exhibiting carbon–carbon donor–acceptor bonds , 2011 .

[46]  G. Frenking,et al.  Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines , 2011, Science.

[47]  Choon‐Hong Tan,et al.  Pentanidium‐Catalyzed Enantioselective Phase‐Transfer Conjugate Addition Reactions. , 2011 .

[48]  Dhilon S. Patel,et al.  Divalent N(I) compounds with two lone pairs on nitrogen. , 2011, The journal of physical chemistry. A.

[49]  A. Gaumont,et al.  Organocatalytic asymmetric synthesis of sulfoxides from sulfenic acid anions mediated by a Cinchona-derived phase-transfer reagent. , 2011, Organic letters.

[50]  S. Tsogoeva,et al.  Enantioselective epoxidation of electron-deficient olefins: an organocatalytic approach. , 2011, Chemical record.

[51]  バン・ローベジーン,アルノルド,et al.  Synthesis of substituted pyrazoline carboxamidine derivatives , 2011 .

[52]  Hans‐Jörg Himmel,et al.  The Flexible Coordination Modes of Guanidine Ligands in Zn Alkyl and Halide Complexes: Chances for Catalysis , 2011 .

[53]  K. Maruoka Highly practical amino acid and alkaloid synthesis using designer chiral phase transfer catalysts as high-performance organocatalysts. , 2010, Chemical record.

[54]  A. Katritzky,et al.  Biguanidines, Guanylureas and Guanylthioureas , 2010 .

[55]  W. Thiel,et al.  Synthesis and coordination properties of nitrogen(I)-based ligands. , 2010, Angewandte Chemie.

[56]  A. Katritzky,et al.  Biguanidines, gunaylureas and guanylthioureas , 2010 .

[57]  H. Schaefer,et al.  Carbene stabilization of diarsenic: from hypervalency to allotropy. , 2010, Chemistry.

[58]  Prasad V. Bharatam,et al.  Electronic structure and reactivity of guanylthiourea: A quantum chemical study , 2010, J. Comput. Chem..

[59]  G. Frenking,et al.  N-heterocyclic carbene stabilized digermanium(0). , 2009, Angewandte Chemie.

[60]  Hyeung‐geun Park,et al.  Cinchona-based phase-transfer catalysts for asymmetric synthesis. , 2009, Chemical communications.

[61]  I. Císařová,et al.  New lipophilic 2-amino-N,N'-dialkyl-4,5-dimethylimidazolium cations: synthesis, structure, properties, and outstanding thermal stability in alkaline media. , 2009, Chemistry.

[62]  Michael C. McLeod,et al.  Co-catalyst enhancement of enantioselective PTC Michael additions involving glycine imines , 2009 .

[63]  G. Bertrand,et al.  Chemical bonding: Rethinking carbon. , 2009, Nature chemistry.

[64]  W. Thiel,et al.  Coordination chemistry at carbon. , 2009, Nature chemistry.

[65]  T. Kano,et al.  Rate enhancement of phase transfer catalyzed conjugate additions by CsCl. , 2009, Organic letters.

[66]  Gernot Frenking,et al.  Divalent silicon(0) compounds. , 2009, Chemistry.

[67]  Dhilon S. Patel,et al.  Novel (+)N(<--L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. , 2009, Chemical communications.

[68]  Ralf Tonner,et al.  Divalent carbon(0) compounds , 2009 .

[69]  M. Fedoryński,et al.  Phase transfer catalysis in pharmaceutical industry--where are we? , 2008, Acta poloniae pharmaceutica.

[70]  H. Schaefer,et al.  Carbene-stabilized diphosphorus. , 2008, Journal of the American Chemical Society.

[71]  Brian M. Stoltz,et al.  Natural products as inspiration for the development of asymmetric catalysis , 2008, Nature.

[72]  H. Schaefer,et al.  A Stable Silicon(0) Compound with a Si=Si Double Bond , 2008, Science.

[73]  K. Maruoka Practical Aspects of Recent Asymmetric Phase-Transfer Catalysis , 2008 .

[74]  H. Schaefer,et al.  Planar, twisted, and trans-bent: conformational flexibility of neutral diborenes. , 2008, Journal of the American Chemical Society.

[75]  Keiji Maruoka,et al.  Recent development and application of chiral phase-transfer catalysts. , 2007, Chemical reviews.

[76]  H. Schaefer,et al.  A stable, neutral diborene containing a B=B double bond. , 2007, Journal of the American Chemical Society.

[77]  K. Maruoka,et al.  Recent advances in asymmetric phase-transfer catalysis. , 2007, Angewandte Chemie.

[78]  D. E. Patterson,et al.  Synthesis of 4-Fluoro-β-(4-fluorophenyl)-l-phenylalanine by an Asymmetric Phase-Transfer Catalyzed Alkylation: Synthesis on Scale and Catalyst Stability , 2007 .

[79]  C. L. Macdonald,et al.  Stable compounds containing heavier group 15 elements in the +1 oxidation state , 2007 .

[80]  F. Sa̧czewski,et al.  N-Amidinio-3,5,5-trimethyl-2-pyrazoline-1-carboxamidine chloride (BPC-151), an oral hypoglycaemic agent , 2007 .

[81]  Ralf Tonner,et al.  Carbodiphosphoranes: the chemistry of divalent carbon(0). , 2006, Angewandte Chemie.

[82]  J. Lacour,et al.  Recent developments in enantioselective phase transfer catalysis using chiral ammonium salts , 2006 .

[83]  Dhilon S. Patel,et al.  Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. , 2005, Journal of medicinal chemistry.

[84]  E. M. Kirton,et al.  Asymmetric Michael addition of glycine imines via quaternary ammonium ion catalysis , 2005 .

[85]  C. L. Macdonald,et al.  The synthesis, characterisation and electronic structure of N-heterocyclic carbene adducts of PI cations , 2005 .

[86]  P. Wenzl,et al.  Extremely base-resistant organic phosphazenium cations. , 2005, Chemistry.

[87]  C. L. Macdonald,et al.  The synthesis, characterisation and electronic structure of N-heterocyclic carbene adducts of P(I) cations. , 2005, Chemical communications.

[88]  M. O'donnell,et al.  The enantioselective synthesis of alpha-amino acids by phase-transfer catalysis with achiral Schiff base esters. , 2004, Accounts of chemical research.

[89]  G. Röschenthaler,et al.  Halex reactions of aromatic compounds catalysed by 2-azaallenium, carbophosphazenium, aminophosphonium and diphosphazenium salts: a comparative study , 2004 .

[90]  B. Lygo,et al.  Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: asymmetric alkylation of glycine imines. , 2004, Accounts of chemical research.

[91]  R. Noyori,et al.  Green oxidation with aqueous hydrogen peroxide. , 2003, Chemical communications.

[92]  K. Maruoka,et al.  Enantioselective amino acid synthesis by chiral phase-transfer catalysis. , 2003, Chemical reviews.

[93]  M. Benaglia,et al.  Use of a Quaternary Ammonium Salt Supported on a Liposoluble Poly(ethylene glycol) Matrix for Laboratory and Industrial Synthetic Applications of Phase-Transfer Catalysis , 2002 .

[94]  Y. Hashimoto,et al.  C(2)-symmetric chiral pentacyclic guanidine: a phase-transfer catalyst for the asymmetric alkylation of tert-butyl glycinate Schiff base. , 2002, Angewandte Chemie.

[95]  B. Neumann,et al.  Monodeazacinchona Alkaloid Derivatives: Synthesis and Preliminary Applications as Phase‐Transfer Catalysts , 2002 .

[96]  Justinus A. Satrio,et al.  Production of benzaldehyde: a case study in a possible industrial application of phase-transfer catalysis , 2001 .

[97]  E. Dehmlow,et al.  Hydrogen Peroxide and Air as Inexpensive Oxidants in Phase-Transfer Catalysis , 2000 .

[98]  A. A. Chesnokov,et al.  Cocatalysis in Phase-Transfer Catalysed Base Induced β-Elimination. Model Studies of Dehydrobromination of Bromocyclohexane , 2000 .

[99]  E. Dehmlow,et al.  HYDROGEN PEROXIDE AND AIR AS INEXPENSIVE OXIDANTS IN PHASE-TRANSFER CATALYSIS. A REVIEW , 2000 .

[100]  M. Mąkosza Phase-transfer catalysis. A general green methodology in organic synthesis , 2000 .

[101]  J. Skidmore,et al.  Asymmetric epoxidation of electron-deficient olefins , 2000 .

[102]  Bernhardi,et al.  Isolation and Structure of the OCNCO(+) Ion. , 1999, Angewandte Chemie.

[103]  A. Nelson Asymmetric Phase-Transfer Catalysis. , 1999, Angewandte Chemie.

[104]  G. Frenking,et al.  Transition Metal Coordinated Al(X)L2 and Ga(X)L2 Fragments , 1998 .

[105]  K. Urata,et al.  Applications of phase-transfer catalytic reactions to fatty acids and their derivatives: Present state and future potential , 1996 .

[106]  J. Brussee,et al.  Enantioselective oxidation of aromatic ketones by molecular oxygen, catalyzed by chiral monoaza-crown ethers , 1995 .

[107]  T. Shioiri,et al.  New methods and reagents in organic synthesis. 75. asymmetric synthesis of α-hydroxy ketones using chiral phase transfer catalysts , 1988 .

[108]  C. M. Starks Phase-transfer catalysis : new chemistry, catalysts, and applications , 1987 .

[109]  E. Grabowski,et al.  Efficient catalytic asymmetric alkylations. 3. A kinetic and mechanistic study of the enantioselective phase-transfer methylation of 6,7-dichloro-5-methoxy-2-phenyl-1-indanone , 1987 .

[110]  R. Neumann,et al.  Hofmann Decomposition of Quaternary Ammonium Salts Under Phase-transfer Catalytic Conditions. , 1986 .

[111]  H. H. Freedman Industrial applications of phase transfer catalysis (PTC): past, present and future , 1986 .

[112]  R. Neumann,et al.  Hofmann decomposition of quaternary ammonium salts under phase-transfer catalytic conditions , 1986 .

[113]  R. Kemp,et al.  Synthesis and reaction chemistry of stable two-coordinate phosphorus cations (phosphenium ions) , 1985 .

[114]  R. O. Day,et al.  How is Phosphorus Bound in 2‐Phospha‐ and 2‐“Phosphoniaallyl” Cations? , 1985 .

[115]  Beno Zaidman,et al.  General economic evaluation of the use of quaternary ammonium salts as catalysts in industrial applications , 1985 .

[116]  A. Schmidpeter,et al.  2‐Phosphaallyl Cations by Formal Insertion of P⊕ into the CC Double Bond , 1983 .

[117]  Y. Imai Syntheses of Some Condensation Polymers by Phase-Transfer Catalyzed Polycondensation , 1981 .

[118]  F. Zwaschka,et al.  ThePCN Group as a Pseudochalcogen; Cyanophosphinidene‐Substituted Heterocycles , 1980 .

[119]  Luigi Cassar,et al.  Phase-Transfer Catalysis , 1977 .

[120]  Charles M. Starks,et al.  PHASE – TRANSFER CATALYSIS. I. HETEROGE NEOUS REACTIONS INVOLVING ANION TRANSFER BY QUATERNARY AMMONIUM AND PHOSPHONIUM SALTS , 1971 .