Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety

Given a multivariate generating function F(z1, ?, zd)=?ar1, ?, rdzr11?zrdd, we determine asymptotics for the coefficients. Our approach is to use Cauchy's integral formula near singular points of F, resulting in a tractable oscillating integral. This paper treats the case where the singular point of F is a smooth point of a surface of poles. Companion papers treat singular points of F where the local geometry is more complicated, and for which other methods of analysis are not known.

[1]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[2]  Philippe Flajolet,et al.  The Average Case Analysis of Algorithms : Multivariate Asymptotics and Limit Distributions , 1997 .

[3]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[4]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[5]  G. Nemes Asymptotic Expansions of Integrals , 2004 .

[6]  D. Klarner,et al.  The diagonal of a double power series , 1971 .

[7]  R. Lyons,et al.  Coalescing Particles on an Interval , 1999 .

[8]  Hideyuki Ishi,et al.  Positive Riesz distributions on homogeneous cones , 2000 .

[9]  Alexander Varchenko,et al.  Newton polyhedra and estimation of oscillating integrals , 1976 .

[10]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[11]  Edward A. Bender,et al.  Admissible Functions and Asymptotics for Labelled Structures by Number of Components , 1996, Electron. J. Comb..

[12]  Edward A. Bender,et al.  Multivariate Asymptotics for Products of Large Powers with Applications to Lagrange Inversion , 1999, Electron. J. Comb..

[13]  Philippe Flajolet,et al.  Planar Maps and Airy , 2000 .

[14]  Jennifer Chayes,et al.  Gaussian fluctuations of connectivities in the subcritical regime of percolation , 1991 .

[15]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[16]  Richard Askey,et al.  Permutation Problems and Special Functions , 1976, Canadian Journal of Mathematics.

[17]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[18]  Harry Furstenberg,et al.  Algebraic functions over finite fields , 1967 .

[19]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[20]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[21]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[22]  H. Hilton Plane algebraic curves , 1921 .

[23]  Trygve Nagell On linear recurrences with constant coefficients , 1958 .

[24]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[25]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[26]  Philippe Flajolet,et al.  Planar Maps and Airy Phenomena , 2000, ICALP.

[27]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[28]  N. Elkies,et al.  LOCAL STATISTICS FOR RANDOM DOMINO TILINGS OF THEAZTEC , 1996 .

[29]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[30]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[31]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[32]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[33]  J. M. Boardman Singularties of differentiable maps , 1967 .

[34]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[35]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[36]  J. T. Chayes,et al.  Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures , 1986 .

[37]  Hsien-Kuei Hwang,et al.  LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .

[38]  Ira M. Gessel,et al.  Super Ballot Numbers , 1992, J. Symb. Comput..

[39]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[40]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[41]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[42]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[43]  Philippe Flajolet,et al.  General combinatorial schemas: Gaussian limit distributions and exponential tails , 1993, Discret. Math..

[44]  G. Shilov,et al.  Generalized Functions, Volume 1: Properties and Operations , 1967 .

[45]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[46]  Edward Bierstone,et al.  Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , 1995 .

[47]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[48]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[49]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[50]  Hsien-Kuei Hwang,et al.  Large deviations for combinatorial distributions. I. Central limit theorems , 1996 .

[51]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[52]  Hsien-Kuei Kwang,et al.  Asymptotic Expansions for the Stirling Numbers of the First Kind , 1995, J. Comb. Theory, Ser. A.

[53]  Svante Janson,et al.  Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[55]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[56]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .