Did trypanosomatid parasites have photosynthetic ancestors?

Some molecular phylogenies of plastid-like genes suggest that chloroplasts (the structures responsible for photosynthesis in plants and algae) might have been secondarily lost in trypanosomatid parasites. Chloroplasts are present in some euglenids, which are closely related to trypanosomatids, and it has been argued that chloroplasts arose early in the diversification of the lineage Euglenozoa, to which trypanosomatids and euglenids belong (plastids-early hypothesis). This article reviews how euglenid ultrastructural systems are functionally integrated and phylogenetically correlated. I argue that chloroplast acquisition profoundly altered the structure of certain euglenids, and that the complete absence of these modifications in other euglenozoans is most consistent with their never having had a chloroplast. Ultrastructural evidence suggests that chloroplasts arose relatively recently within a specific subgroup of euglenids and that trypanosomatids are not secondarily non-photosynthetic (plastids-recent hypothesis).

[1]  B. Leander,et al.  EVOLUTION OF PHACUS (EUGLENOPHYCEAE) AS INFERRED FROM PELLICLE MORPHOLOGY AND SSU rDNA , 2001 .

[2]  S. Ralph,et al.  The apicoplast as an antimalarial drug target. , 2001, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[3]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.

[4]  P. Walne,et al.  Photobehavior of euglenoid flagellates: Theoretical and evolutionary perspectives , 1990 .

[5]  P. Walne,et al.  A Comparison of Paraxial Rods in the Flagella of Euglenoids and Kinetoplastids , 1993 .

[6]  B. Leander,et al.  Comparative Morphology of the Euglenid Pellicle. II. Diversity of Strip Substructure , 2001, The Journal of eukaryotic microbiology.

[7]  B. Leander,et al.  Epibiotic bacteria and a novel pattern of strip reduction on the pellicle of Euglena helicoideus (bernard) lemmermann , 2000 .

[8]  Daniel J. Rigden,et al.  Plant-like traits associated with metabolism of Trypanosoma parasites , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Stick,et al.  Occurrence of articulins and epiplasmins in protists. , 2003, The Journal of eukaryotic microbiology.

[10]  G. Brugerolle,et al.  Intercalary strip development and dividing cell morphogenesis in the euglenidCyclidiopsis acus , 1987, Protoplasma.

[11]  A. Simpson The identity and composition of the Euglenozoa , 1997 .

[12]  A. Monfort,et al.  Complete sequence of Euglena gracilis chloroplast DNA. , 1993, Nucleic acids research.

[13]  A. Simpson,et al.  Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. , 2004, Molecular phylogenetics and evolution.

[14]  P. Walne,et al.  ENTOSIPHON SULCATUM (EUGLENOPHYCEAE): FLAGELLAR ROOTS OF THE BASAL BODY COMPLEX AND RESERVOIR REGION 1, 2 , 1987 .

[15]  F. Rodríguez-Valera,et al.  New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate and a new environmental sequence. , 2001, International journal of systematic and evolutionary microbiology.

[16]  M. A. Farmer,et al.  Flagellar systems in the euglenoid flagellates. , 1988, Bio Systems.

[17]  Yuji Kohara,et al.  The Phylogenetic Position of Red Algae Revealed by Multiple Nuclear Genes from Mitochondria-Containing Eukaryotes and an Alternative Hypothesis on the Origin of Plastids , 2003, Journal of Molecular Evolution.

[18]  T. Suzaki,et al.  Gliding movement in Peranema trichophorum is powered by flagellar surface motility. , 2003, Cell motility and the cytoskeleton.

[19]  G. Brugerolle,et al.  Biochemical and immunological characterization of intermicrotubular cement in the feeding apparatus of phagotrophic eugienoids:Entosiphon, Peranema, andPloeotia , 1992, Protoplasma.

[20]  B. Leander,et al.  Character evolution in heterotrophic euglenids , 2001 .

[21]  R. Triemer,et al.  Phylogeny of Diplonema ambulator (Larsen and Patterson) , 1994 .

[22]  D. Patterson,et al.  The Biology of free-living heterotrophic flagellates , 1992 .

[23]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[24]  G. B. Bouck,et al.  Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules , 1976, The Journal of cell biology.

[25]  J. Gray,et al.  Is Moyeria a euglenoid , 1989 .

[26]  D. Angeler,et al.  Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. , 2001, International journal of systematic and evolutionary microbiology.

[27]  G. McFadden,et al.  More plastids in human parasites? , 2004, Trends in parasitology.

[28]  M. Melkonian,et al.  Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. , 2003, Protist.

[29]  R. Triemer,et al.  A MOLECULAR ANALYSIS OF THE EUGLENOPHYTES USING SSU RDNA , 2000, Journal of phycology.

[30]  B. Leander,et al.  TRENDS IN THE EVOLUTION OF THE EUGLENID PELLICLE , 2001, Evolution; international journal of organic evolution.

[31]  Andrew J. Roger,et al.  A Cyanobacterial Gene in Nonphotosynthetic Protists—An Early Chloroplast Acquisition in Eukaryotes? , 2002, Current Biology.

[32]  W. Shin,et al.  ARE CYTOPLASMIC POCKETS (MTR/POCKET) PRESENT IN ALL PHOTOSYNTHETIC EUGLENOID GENERA?1 , 2002 .

[33]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[34]  A. Simpson,et al.  The evolutionary history of kinetoplastids and their kinetoplasts. , 2002, Molecular biology and evolution.

[35]  M. Klingberg,et al.  Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). , 2001, International journal of systematic and evolutionary microbiology.

[36]  R. Triemer,et al.  Phylogeny of Diplonema ambulator (Larsen and Patterson): 1. Homologies of the flagellar apparatus , 1994 .

[37]  O. Correspondent Chloroplast DNA , 1967, Nature.

[38]  P. Keeling,et al.  Lateral Transfer and Recompartmentalization of Calvin Cycle Enzymes of Plants and Algae , 2004, Journal of Molecular Evolution.

[39]  J. Lukeš,et al.  Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. , 2000, International journal of systematic and evolutionary microbiology.

[40]  B. Leander,et al.  Comparative Morphology of the Euglenid Pellicle. I. Patterns of Strips and Pores , 2000, The Journal of eukaryotic microbiology.

[41]  S. P. Gibbs,et al.  The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .

[42]  P. Walne,et al.  An evaluation of a possible phylogenetic relationship between the Euglenophyta and Kinetoplastida , 1984, Origins of life.

[43]  P. Borst,et al.  Secondary loss of chloroplasts in trypanosomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. A. Farmer,et al.  An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids , 1991, Protoplasma.

[45]  I. Busse,et al.  Application of spectral analysis to examine phylogenetic signal among euglenid SSU rDNA data sets (Euglenozoa) , 2003 .

[46]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[47]  P. Keeling,et al.  Recycled plastids: a 'green movement' in eukaryotic evolution. , 2002, Trends in genetics : TIG.

[48]  D. Patterson,et al.  PHYLOGENY OF PHAGOTROPHIC EUGLENIDS (EUGLENOZOA): A MOLECULAR APPROACH BASED ON CULTURE MATERIAL AND ENVIRONMENTAL SAMPLES 1 , 2003 .

[49]  G. Brugerolle,et al.  Morphogenesis of the feeding apparatus ofEntosiphon sulcatum , 1992, Protoplasma.

[50]  R. Stick,et al.  Occurrence of Articulins and Epiplasmins in Protists1 , 2003 .

[51]  K. Kjer,et al.  Phylogeny of the photosynthetic euglenophytes inferred from the nuclear SSU and partial LSU rDNA. , 2003, International journal of systematic and evolutionary microbiology.

[52]  B. Leander,et al.  Morphostasis in alveolate evolution. , 2003 .

[53]  M. Melkonian,et al.  A cryptic cytostome is present inEuglena , 1986, Protoplasma.

[54]  A. Preisfeld,et al.  MOLECULAR EVOLUTION OF EUGLENOZOAN PARAXONEMAL ROD GENES par1 AND par2 COINCIDES WITH PHYLOGENETIC RECONSTRUCTION BASED ON SMALL SUBUNIT rDNA DATA 1 , 2002 .