An experimental investigation into the dynamics of a string

We describe a detailed experimental investigation into the dynamics of a sinusoidally forced string. We find qualitative agreement with the predictions of the averaged equations of motion for a string in the high damping regime. At low damping we observe more complex phenomena not present in the averaged equations.

[1]  Schreiber,et al.  Topological time-series analysis of a string experiment and its synchronized model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Philip Holmes,et al.  Non-linear, non-planar and non-periodic vibrations of a string , 1992 .

[3]  John W. Miles,et al.  Resonant, nonplanar motion of a stretched string , 1984 .

[4]  Edgar Knobloch,et al.  Bifurcations in a model of magnetoconvection , 1983 .

[5]  David Allingham,et al.  Wavelet reconstruction of nonlinear dynamics , 1998 .

[6]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  John A. Elliott,et al.  Intrinsic nonlinear effects in vibrating strings , 1980 .

[8]  Roddam Narasimha,et al.  Non-Linear vibration of an elastic string , 1968 .

[9]  James M. Anderson,et al.  Measurements of nonlinear effects in a driven vibrating wire , 1994 .

[10]  B. Jones,et al.  The Duffing oscillator: A precise electronic analog chaos demonstrator for the undergraduate laboratory , 2001 .

[11]  Brown,et al.  Synchronization of chaotic systems: The effects of additive noise and drift in the dynamics of the driving. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  A. K. Bajaj,et al.  On the amplitude dynamics and crisis in resonant motion of stretched strings , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[13]  David M. Walker,et al.  Radial-Basis Models for Feedback Systems With Fading Memory , 2001 .

[14]  Matthew Moelter Laboratory-based nonlinear dynamics course for science and engineering students , 2001 .

[15]  Molteno Fast O(N) box-counting algorithm for estimating dimensions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Nicholas B. Tufillaro,et al.  Resource Letter: ND-1: Nonlinear Dynamics , 1997 .

[17]  Nicholas B. Tufillaro,et al.  Nonlinear and chaotic string vibrations , 1989 .

[18]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[19]  M. Small,et al.  Towards long-term prediction , 2000 .

[20]  G. Nunes,et al.  A mechanical Duffing oscillator for the undergraduate laboratory , 1997 .

[21]  David M. Walker,et al.  Reconstructing nonlinear dynamics by extended Kalman filtering , 1998 .

[22]  Oliver M. O’Reilly,et al.  Global bifurcations in the forced vibration of a damped string , 1993 .

[23]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[24]  Anil K. Bajaj,et al.  Amplitude modulated and chaotic dynamics in resonant motion of strings , 1989 .

[25]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[26]  John A. Elliott Nonlinear resonance in vibrating strings , 1982 .

[27]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[28]  Nicholas B. Tufillaro,et al.  Torus doubling and chaotic string vibrations: Experimental results , 1990 .

[29]  Roger J. Hanson Optoelectronic detection of string vibration , 1987 .

[30]  Kevin Judd,et al.  Modeling chaotic motions of a string from experimental data , 1996 .

[31]  Kevin Judd,et al.  Modeling continuous processes from data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.