Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid

[1]  R. Bino,et al.  Characterization of the natural variation in Arabidopsis thaliana metabolome by the analysis of metabolic distance , 2011, Metabolomics.

[2]  D. Kliebenstein,et al.  Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators , 2011 .

[3]  J. V. van Loon,et al.  Prey‐mediated effects of glucosinolates on aphid predators , 2011 .

[4]  J. V. van Loon,et al.  Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction , 2011 .

[5]  J. L. Corff,et al.  Plant-mediated effects on a toxin-sequestering aphid and its endoparasitoid , 2011 .

[6]  C. Müller,et al.  Sequestration of Glucosinolates and Iridoid Glucosides in Sawfly Species of the Genus Athalia and Their Role in Defense Against Ants , 2010, Journal of Chemical Ecology.

[7]  W. H. van der Putten,et al.  Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. , 2010, Journal of agricultural and food chemistry.

[8]  D. Voigt,et al.  Tomato-aphid-hoverfly: a tritrophic interaction incompatible for pest management , 2009, Arthropod-Plant Interactions.

[9]  M. Dicke,et al.  Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps , 2009 .

[10]  Joop J A van Loon,et al.  Role of glucosinolates in insect-plant relationships and multitrophic interactions. , 2009, Annual review of entomology.

[11]  J. Gershenzon,et al.  Formation of Simple Nitriles upon Glucosinolate Hydrolysis Affects Direct and Indirect Defense Against the Specialist Herbivore, Pieris rapae , 2008, Journal of Chemical Ecology.

[12]  F. Schroeder,et al.  Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). , 2008, The Plant journal : for cell and molecular biology.

[13]  T. Bukovinszky,et al.  Direct and Indirect Effects of Resource Quality on Food Web Structure , 2008, Science.

[14]  N. V. van Dam,et al.  Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth , 2008, Plant signaling & behavior.

[15]  J. Harvey,et al.  Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids , 2008, Phytochemistry Reviews.

[16]  C. Müller Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae , 2008, Phytochemistry Reviews.

[17]  G. Powell,et al.  Accumulation of Glucosinolates by the Cabbage Aphid Brevicoryne brassicae as a Defense Against Two Coccinellid Species , 2008, Journal of Chemical Ecology.

[18]  A. Bones,et al.  The cabbage aphid: a walking mustard oil bomb , 2007, Proceedings of the Royal Society B: Biological Sciences.

[19]  G. Jander,et al.  Biochemistry and molecular biology of Arabidopsis–aphid interactions , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  B. Berger,et al.  The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. , 2007, The Plant journal : for cell and molecular biology.

[21]  T. M. Bezemer,et al.  Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant‐volatile signals , 2007 .

[22]  G. Poppy,et al.  A Comparison of Semiochemically Mediated Interactions Involving Specialist and Generalist Brassica-feeding Aphids and the Braconid Parasitoid Diaeretiella rapae , 2007, Journal of Chemical Ecology.

[23]  G. Jander,et al.  Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. , 2007, The Plant journal : for cell and molecular biology.

[24]  B. Berger,et al.  The R 2 R 3-MYB transcription factor HAG 1 / MYB 28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana , 2007 .

[25]  Barbara Ann Halkier,et al.  Biology and biochemistry of glucosinolates. , 2006, Annual review of plant biology.

[26]  L. Eriksson Multi- and megavariate data analysis , 2006 .

[27]  P. Ode Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. , 2006, Annual review of entomology.

[28]  J. Harvey Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity , 2005 .

[29]  C. Müller,et al.  Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. , 2005, Insect biochemistry and molecular biology.

[30]  J. Schultz,et al.  Major Signaling Pathways Modulate Arabidopsis Glucosinolate Accumulation and Response to Both Phloem-Feeding and Chewing Insects1 , 2005, Plant Physiology.

[31]  T. Bukovinszky,et al.  Variation In Plant Volatiles and Attraction Of The ParasitoidDiadegma semiclausum(Hellén) , 2005, Journal of Chemical Ecology.

[32]  T. A. Beek,et al.  Leaf surface compound fromBrassica oleracea (Cruciferae) induces oviposition byPieris brassicae (Lepidoptera: Pieridae) , 1992, CHEMOECOLOGY.

[33]  A. Svatoš,et al.  Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. , 2004, The New phytologist.

[34]  P. Brakefield,et al.  Analysis of a Chemical Defense in Sawfly Larvae: Easy Bleeding Targets Predatory Wasps in Late Summer , 2003, Journal of Chemical Ecology.

[35]  E. Haubruge,et al.  Effects of Allelochemicals from First (Brassicaceae) and Second (Myzus persicae and Brevicoryne brassicae) Trophic Levels on Adalia bipunctata , 2001, Journal of Chemical Ecology.

[36]  S. Eigenbrode The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. , 2004, Arthropod structure & development.

[37]  F. Francis,et al.  Influence of prey host plant on a generalist aphidophagous predator: Episyrphus balteatus (Diptera: Syrphidae) , 2002 .

[38]  A. Karley,et al.  Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. , 2002, The Journal of experimental biology.

[39]  E. Haubruge,et al.  Characterisation of aphid myrosinase and degradation studies of glucosinolates. , 2002, Archives of insect biochemistry and physiology.

[40]  P. Brakefield,et al.  Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae , 2002 .

[41]  W. F. Tjallingii,et al.  The role of sinigrin in host plant recognition by aphids during initial plant penetration , 2002 .

[42]  T. Dawson,et al.  Differential induction of trichomes by three herbivores of black mustard , 2002, Oecologia.

[43]  Alexandra M. E. Jones,et al.  Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  E. Andreasson,et al.  Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. , 2001, Plant physiology.

[45]  R. Cole,et al.  Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). , 2001, Insect biochemistry and molecular biology.

[46]  M. Strand,et al.  Differences in larval feeding behavior correlate with altered developmental strategies in two parasitic wasps: implications for the size‐fitness hypothesis , 2000 .

[47]  R. Mithen,et al.  Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  A. Hall Induced Responses to Herbivory. , 1999 .

[49]  L. M. Schoonhoven,et al.  Insect-plant biology , 1998 .

[50]  R. Cole The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species , 1997 .

[51]  B. Rost,et al.  Biology and Biochemistry , 1996 .

[52]  J. Rosenheim Parasitoids: Behavioral and evolutionary ecology , 1994 .

[53]  W. F. Tjallingii,et al.  Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals , 1993 .

[54]  Nouna Kettaneh-Wold,et al.  Analysis of mixture data with partial least squares , 1992 .

[55]  R. Buchner,et al.  Approach to Determination of HPLC Response Factors for Glucosinolates , 1987 .

[56]  Carlos Alberto Brebbia,et al.  Basic principles and applications , 1984 .

[57]  S. Duffey Sequestration of Plant Natural Products by Insects , 1980 .

[58]  R. W. Baldwin,et al.  Biology and biochemistry , 1974 .

[59]  R. B. Root,et al.  HABITAT SELECTION BY THE APHID PARASITE DIAERETIELLA RAPAE (HYMENOPTERA: BRACONIDAE) AND HYPERPARASITE CHARIPS BRASSICAE (HYMENOPTERA: CYNIPIDAE) , 1970, The Canadian Entomologist.